SIGNAL RECOVERY

Luca Colombo | Politecnico di Milano | a. a. 2022/2023



DISCLAIMER

These notes cover the arguments of the course ‘Signal Recovery’ held by Professor I. Rech at Politecnico
di Milano during the academic year 2022-2023.

Since they have been authored by a student, errors and imprecisions can be present.

These notes don’t aim at being a substitute for the lectures of Professor Rech, but a simple useful tool for
any student (life at PoliMi is already hard as it is, cooperating is nothing but the bare minimum).

Please remember that for a complete understanding of the subject there is no better way than directly
attending the course (DIY), which is an approach that I personally suggest to anyone.

In any case, if you found these notes particularly helpful and want to buy me a coffee for the effort, you're
more than welcome: https://paypal.me/LucaColomboxc

lucacolombo29@gmail.com

Released under Creative Commons license BY-NC-SA 4.0
This is a free copy. If you bought this PDF you have been scammed



SIGNAL RECOVERY

Normally we have a sensor with noise and an amplifier. The problem is that we cannot change the front
end, so we have to deal with noise. So we have the signal and the noise. Just one of the two it is nosense,
we will deal with the signal to noise ratio. Our target is to have a SNR equal to 1. This means that the
signal and the noise have the same amplitude.
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SIGNIFICANT SIGNIFICANT

Noise Noise NEGLIGIBLE NEGLIGIBLE
of Sensor of Preamp circuits Noise Noise
(or Front-end) of Filtering circuits  of Meter circuits
(hopefully!) (hopefully!)

Normally, we want a SNR of at least 3.
We need to include a filtering section, whose noise is typically negligible. We will develop a one stage
filter. This because the noise of the amplification is so high that the noise of the filter is negligible.

Finally, we need a meter with negligible noise. It is the instrument that gives us the final measurement.
The problem is that we don’t know anything about the signal and the noise.

For the signal, every time we will have a different signal, the rect, the exponential and so on, so we cannot
study all the possible signals and waveforms, hence we need some tools and properties of the signal that
can be applied to all the signals to create filters.

One of the important thing is the time domain and the frequency domain.

MATHEMATICAL DESCRIPTION OF SIGNALS

+ Signals = electric variables x (voltage, current ...) that carry information
* Inthe domain of time t : deterministic functions x = x(t)

Example: exponential pulse
\ x = 1(t)e’{/T
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In the domain of frequency f (Fourier transform domain) can be considered
linear superposition (sum) of elementary sinusoid components

This is a first example of signal, with a laser that excites a fluorescent material. We have an exponential
decay. The real signal is the blue one on the bottom right, noisy and with low resolution.



FREQUENCY DOMAIN: RECAP

Signals as linear superposition (sum) of elementary sinusoid components

+co

x(t) = jX(f)ejZ”f‘df

—oo

*  X(f) = Fourier transform of x(t)
*  X(f)is complex : Module and Phase

(or Real and Imaginary parts)

+0o

X(f) = F[x(®)] = [_ x(t)e " dt

The first formula is the formula of a signal in the time domain written as a function of X(f), that is the
Fourier transform of the signal. The signal can be expressed as the superposition of waves in the frequency
domain. Similar, the signal in the time domain can be written as the superposition of deltas.

In both integral we have the linearity property, which is important because we will work always with
linear signals.

As for the Fourier transform, one of its property, starting from the integral, is that in the time domain we
will have real signals, while in the frequency domain we have complex signals, so we have both the
module and the phase. If I remove the phase (the exponential), from the equations above I need to put t
= 0, so that the exponential is 1. So the value of the signal at t = 0 is equal to the integral from -inf to +inf
of the Fourier transform in the frequency domain and viceversa.

This is important because this will be used a lot of time. For instance, let’s integrate from -inf to + inf the
Fourier transform of the 1* order LP filter (exponential decay) that is 1/(1+s*tau).

We know the expression in the time domain and, using the equation 1, at t = 0 the integral of the Fourier
transform is x(t = 0), which is 1. So the value of the integral is 1.

In the time domain we can consider the signal as an overlap of deltas.

CONVOLUTION: RECAP

Constant-parameter linear filters (NO switches, NO time-variant components!!)

are characterized by

H(f) transfer function in frequency domain H(f) = F[h(t)]
h(t) &-response in time domain h(t) = FH(f)]
x(at) y(t)

Signal in —» h(a) > Signal out

The input x(a) can be described as a linear superposition (sum) of elementary
&-pulses of amplitude x(a)da
THEREFORE

the output y(t) can be described as a linear superposition (sum) of elementary
&-pulse responses x(a)da h(t-a)

&‘H L
e

YO = x(@ (@ = [ @Rt — @)da

We take the delta of the input, we pass in the filter, we get a delta response. Then we shift the delta
response for all the delta of the signal and then we sum at the output all the delta response with the weight
of the amplitude of the signal.

Computing the convolution
For instance, we need the convolution of the delta response and of my signal.



y(t) = f x(a)h(t — a)da
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Top we have the delta response of the filter. To make the convolution we take the delta response, we flip
it, we shift the one flipped as a function of the signal and we make the integral of the product.

The convolution of a rect with itself gives as a triangle with a peak equal to the peak value of the rect. If
the triangle is the convolution of the rect with itself and the convolution in the time domain is the
multiplication in the frequency domain, in the frequency domain we will have a sinh squared.

TRUNCATED SIGNALS

Noteworthy case: truncated sinusoidal signal

seen in time domain seen in frequency domain
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We have a sinusoidal waveform. In the real world it doesn’t exist because it goes to -inf to +inf. The
Fourier transform of the sinusoidal waveform is two delta of half amplitude at the frequency of the
sinusoidal. It must be remembered.
I need to multiply the sinusoidal by a rect, whose Fourier transform is the sinh, I truncate the sinusoid in
the time domain and so in the frequency domain I’'m making the convolution of the two deltas and the
sinh. This is the Fourier transform of a truncated signal.

It is important for the following reasons. In real world, we see just a part of the sinusoid.

To avoid aliasing, we need a sampling frequency that is two times the maximum frequency of the signal.
If we have a truncated signal, which is the frequency of the sinusoid? We are creating aliasing because in
the frequency domain the truncated sinusoid has the sinh that goes to -inf and +inf in the spectrum.



* In reality the signal is always available over a finite time interval:
therefore, in reality we always deal with truncated signals

* cropping in time corresponds to convolution of the signal in the f domain
with the transform of the rectangle (sinc function)

* the convolution spreads the signal in the f domain;
that is, it makes it wider and smoother

* the narrower is the window 2T, the wider is the sinc
and more significant is the signal spreading in frequency

*  Applying correctly the sampling theorem we see that:
the sampling frequency fg to be employed for a truncated sinusoid of frequency f,,
is NOT fs= 2f,; it must be REMARKABLY HIGHER fs >> 2f,,

SIGNAL ENERGY

From a signal we can recover some information, e.g. the energy of the signal. We need to use all they
possible information to increase the SNR, but at the same time simplifying them.

The energy is defined as in the image.

The Energy E of a signal x(t) is defined as

i e

E= 7l‘im fxz(a)da = fxz(a)da

=T o

Signals x(t) with finite £ are called energy-signals. Typical example: pulse signals

INTUITIVE VIEW OF ENERGY: “
_ ; P
Let x(t) be a voltage pulse on a unitary resistance R=1 Q, 4 J!
(t) gep y \1“\1\\“

Power=V2/R then E is the energy dissipated in R by the pulse

It is the integral of the square of the signal in the time domain from -inf to +inf. For instance, let’s take
the voltage over a resistor, this integral is exactly the energy on the resistor from the electrical point of
view.



The other important formula is the autocorrelation formula.

Signal Auto-Correlation Function (Energy-type)

T ©

kyr(T) = 7l‘im fx(a)x(a + 7)da = f x(@)x(a + 1)da

-T —00

k. (T) gives the degree of similarity of x(t) with itself shifted by t

Energy = Autocorrelation at zero-shift

Reveug
——

kxx(o) =E

It is the integral from -inf to + inf of what in the image. It is similar to the convolution but not the same.
This formula gives us the level of similarity of the function (or signal) with itself. In the previous image
we defined the energy. Energy is nothing else than the autocorrelation at zero shift.

Example
= PLY:
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kyx(7) = f x(@)x(a + 1)da
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Some useful signals are the exponential decay time and the rect. Which is the autocorrelation of the
exponential decay time? I take the exponential decay time and the exponential decay time with the shift
equal to zero, we multiply them and make the integral. So we add a factor 2 to the exponential. So we
get an exponential whose tau is half the original tau of the signal if I put the 2 at the denominator. Thus
the integral will be half of the tau (integral of the signal was tau). So the energy of the signal is tau/2.

Now I shift the signal and make the same computation, so multiply the
two signals and make the integral. The multiplication of the two functions

at the extremes is 0 (both are zero), and in general if one of the two signals \\\
is zero the multiplication is 0. So we need just the integral of the part —_—d ;
where both are different from zero. The first signal has the same original ‘__J ’

tau, but a smaller amplitude.

Another example, the autocorrelation of the rect.
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Autocorrelation of a delayed exponential is the following.

kyx(T) = fx(a)X(a + 7)da ‘1“\11\&‘\“““

Case: double pulse (exponential)
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CROSS CORRELATION

T P
kyy(T) = 7121; f x(@)y(a + 1)da = f x(@)y(a + 1)da
-T -00

* x(t) and y(t) are two different signals of energy-type

* k() gives the degree of similarity of x(t)

with y(t) shifted by t to left (towards earlier time)

* Various denominations for k,,(T) :
Cross-Correlation function of x and y

Mutual-Correlation function of x and y

Level of similarity between two different signals. It is the same of the autocorrelation but the second
signal is shifted.

The formula is similar to the one of the convolution. We take the signal, the second signal, we shift,
multiply and make the integral. It seems the convolution but without the flipping that we have in the
convolution.

If I make the convolution of signals x and y I get z(T).

Convolution

x(a) \
P 3
xxy=2z(T) y(a) S

is different from Crosscorrelation k., (T) i ‘ a
yTr-ay | /"
T o
However ; ;
x(-a) /l
Convolution with first term reversed ; : a
x(=a) xy(a) = u(T) x(—y(T—a) A =
is equal to Crosscorrelation : a
U(T) = kyy(T) e g
e R )=k (T
u(0) = kxy(o) = I/ u(T) ny( )
|k (1) = x(=a) * y(a) | T

Now I do the convolution with a modification, instead of x(alpha) I take x(-alpha) and do the
convolution. Now x and y are in the same direction, so I'm doing the cross correlation. So if I take the
first signal, I flip it and I convolve with the second one I’'m doing the cross correlation (because in the
convolution I would have need to flip the second signal, so I return back with the two signals in the same
direction).




The last formula in the box is important because we don’t know anything for the cross correlation, but
we know that the convolution in the time domain is the multiplication in the frequency domain, we have
a connection for the cross correlation in the frequency domain. So we have the possibility to switch from
the frequency domain to the time domain.

kexy (T) w(T) = x(=a) * y(a)

‘\ ‘ x(a) 'l\
j i\_’ y(a) ' \ N
J\ ViasT) T-a
T : :
! - () J] '

& x(a) y(a+T) x(—)y(T — a),A‘

F‘xy(r.:) ju(T)

Energy signal x(a) with Fourier transform X(f): by Parseval’s theorem

E= [ x*(a)da=[" |X(O)2df = 2 []|X(f)I?df

\J

ENERGY SPECTRUM

S {f) = |X(f)|? is called the Energy Spectrum of the signal x(a)

INTUITIVE VIEW OF ENERGY SPECTRUM:

(1) Let x(t) be voltage on a unitary resistance R=1 Q
(2) x(t) = sum of sinusoid components with frequency f and amplitude |X(f)|df
(3) Sinusoids are orthogonal functions : No power from multiplication of different

components (different f)

Every component (at frequency f) contributes an energy:

AP
(dE=2|X(f)I?df | \m\l““

It gives an information on how the energy of the signal is distributed.

We have just to use the formula in the first box, which is the Perceval’s theorem. It applies to real signal.
The energy is defined as the integral of x*2 from -inf to +inf. The Perceval theorem tells us that we can
make the integral of the square of the signal in the time domain (if real) and getting the same result if we
make the integral of the square modulus of the Fourier transform, both from -inf to +inf.

In the time domain I have the energy and I want to have some information related to the energy also in
the frequency domain, and this can be done with this relationship.

I define the square modulus of the Fourier transform as the energy spectrum. It is something that
integrated from -inf to + inf in the frequency domain gives us the energy.



In the real world, the spectrum is not correct just from -inf to +inf, but also for a small amount of
frequency. I can evaluate the spectrum at a specific frequency with a small df.

« Alternative definition of the Energy Spectrum is

°
Sy = Flkyx] %—R/

and by a basic property of Fourier transforms

o) [oe) )
&- |
E = kyx(0) = f S (F)df = f X(F)[2df ;""’ﬁfﬂ/

— 00

The energy spectrum is also the Fourier transform of the autocorrelation. Then the energy is the
autocorrelation in zero that is the integral of the square modulus of the Fourier transform.

The spectrum is indeed a function that, if integrated in the frequency domain from -inf to +inf gives us
the energy. But it is also the Fourier transform of the autocorrelation.

The integral of -inf to +inf of a function in the frequency domain is the value in zero of the inverse Fourier
transform. So the inverse Fourier transform of the spectrum has to be the value in zero, so the energy,
that is the autocorrelation in zero.

The tau of the exponential is Tp. We know the autocorrelation function (it is tau and not [t|). We also
know the energy, which is the value in 0 of the autocorrelation.

Then we want to move in the frequency domain, and we get the spectrum. Plot x is a linear-linear plot,
not the Bode diagram. In the linear-linear plot, the area of the plot will give us the value of the white
noise of the signal, so to compare the filters we need just to compare the area. Same reasoning for the 1/f
noise but with a linear-log plot.
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SIGNAL POWER



The energy of a sinusoidal waveform is infinite, the average value is zero but the energy not. So instead
of the energy we can define the power. All that was defined for energy has to be defined for power.

The power is the limit of the square of the signal divided by two times the period 2T (and we added the
limit). It has the same shape of the energy formula.

For signals x(t) that have NOT finite energy £ = o (DC, sinusoids, periodic signals, etc. )
the Power P is defined as the time-average

T .
P= i fx}'(“)d
= l1m 2T a

T—o0
-T

Parseval theorem is valid for the entire integral f_t:
T
but NOT for the truncated integral J‘fT
For computing P in f domain instead of truncated integral we use truncated signal x,(t)

xp(a) = x(a) for |a| sT
xp(a) =0 for |a|>T

We can thus exploit Parseval theorem: with X, (f) = F[xr(a)] we get

2 2 2

T—oo " —® T—o " —®

co

The Power Spectrum of the signal x(a) is defined as the integrand

sdf)=lim LD and P = [T s.(Pdf

We are considering power signals, not energy signals. If instead of x we use the truncated signal x_T, at
this point we can write the integral from -inf to +inf, because it is zero where we are not interested.
Once we have the truncated signal and the integral from -inf to +inf we can use the Parseval theorem.

In x the limit is shifted inside because the integral is linear. So also for the spectrum definition we have
something similar, but we add the limit and 2T.

Auto-correlation function — power type

Just like power P, the autocorrelation of power signals is defined as time-average

T

K0 = Jim [
=T

x(a)x(a + 1) da

o7 notethat P =K, (0)

. ) . T
Also here we use truncated signal x,{a) instead of truncated integral f_T

T w
L x(@x(a+7) xp(a@)xr(a + 1)
Kae®) = Jim | S50 e = i | T
_T —00
NB1: for finite T it is f_TTx[a)x(a + 1)da # ffom xp(a@)xr(a + 1)da

but for jlim the = isvalid

The autocorrelation in zero is exactly the power, so the formula is correct (equivalent seen for the energy).

10



The autocorrelation of the signal is the limit of the integral from -T to T of the formula in the second line.
Now I use the same trick as before shifting to -inf to +inf the integral and with the truncated signal. The
thing is that the equation, without the limit, is not valid. If I have tau = 0 the equation is correct for any
t, but if tau != 0, the equation is equal only for the limit that goes to inf.

k7 (7)
2T

Kix (1) = Th_lgo

An alternative definition of signal Power Spectrum is

°
Re
Sy = F[Kw (D] | X %R/
and
S
P = Ku(0) = [ S:(Ndf %@/

So the autocorrelation is the limit of the autocorrelation of the truncated signal (bottom image, first
formula). The autocorrelation of the truncated signal is known because the truncated signal is an energy
signal because the truncated signal is limited in time.

Hence we can define the new power spectrum as the Fourier transform of the autocorrelation (x). We
have the exact same relationships that we had for energy. Of course, inside the formula of the spectrum
and so on we have the limit, but since we will never calculate the integral, we are good.

Cross-correlation function — power type

T [ee]
x(@)y(a+1 xr(@yr(a+t
7’]" o

X(t) and y(t) are two different signals, both power-type

K,,(t) measures the degree of similarity of x(t) with y(t) shifted by t
to left (towards earlier time)

If even only one of the two signals x(t) and y(t) is energy-type
the energy type autocorrelation k,,(t) must be employed

(in fact, the power-type crosscorrelation vanishes K,,(t) = 0
and the energy-type crosscorrelation k,(t) is finite).

If one of the signal is power and the other one is energy, what do we do? The energy type autocorrelation
must be used.
11



Comparison between energy and power

Energy-type (pulses etc.) Power-type (periodic waveforms etc.)
Energy E= ffooo x*(a)da Power P = lim fT (@) da
T—oo =T 2T
Autocorrelation Autocorrelation
(1) = [ x(@)x(a + D)da Kyp(r) = Jim [7 X050 g
Energy spectrum Power spectrum
2
= = 2 X (F
Sxe= Fllux(D] = 1X ()] Sep= FlKee(O)] = Jim b 0|
and and
E= f,wm Sx,e(f)df P = f Sx,p(f)df
NOISE WAVEFORMS
White Noise

spectrum S = constant

Random-Walk Noise

1
spectrum § = 7z

Flicker Noise

1
spectrum § = =
E ;i

Sl R A, R AN o,




The problem with noise is that we have more ensembles. The case is the image below.

The ensemble tells us that if we consider 3 identical amplifier and we apply the same input signal, at the
output we will have the same output signal, but for the noise, these 3 identical amplifiers will have three
different waveforms. So we need to introduce the fact that the noise signal is no more deterministic.

Classifying the amplitude of noise samples

Let’s focus on t1. We choose one time of the axis and we study what happens for one waveform. So at
t1 we have one value for each replica, so if we have thousands of replica we have thousands of values.
What I can do is to see how many times the amplitude of the replicas has a certain amplitude at t1, I
count them. Then I divide the number of times I found by the number of replicas (e.g. in how many
replicas the signal is in the second step? In the second one? Then I count the number of times in the
different replica).

If I make the plot I get an histogram.

x(t)

Ax

s t
Starting point: The amplitude x(t;) of the noise waveform at time t,

Measure: x(t;) is compared to a scale of discrete values x, spaced by constant
interval Ax and is classified at the nearest value x, of the scale

sou  Ahigh number N of noise waveform is sampled and measured of which AN, is the
G number of sample waveforms classified at x;

AN i i -
Afy = Tk is called statistical frequency of the amplitude x,

X[Lg] AITIPHILUUE SdAITIPIE dL LITIE 17 ON edlil wdvelorin

The distribution I get is a statistical distribution. The distribution I get is the probability. The integral of
the probability function is 1. So I have the probability to have a certain value.
A x(t)

Ax

& t

A
N values x(t;) measured (in units Ax) in N waveforms tAN

Histogram
of measured
x values

AN, in the central Ax (around x=0)
AN; in the first Ax (centered in x,= AX)

AN, in the k-th Ax (centered in x,= kAx)

k
statistical frequency of x, is Afy :A—zk P
N p(x)
Probability Density
« if Ax > dx then AN, — dN, = n(x,)dx obxvaliias
« if N> o then dfk=L;")dx=p(x)dx _\X

13



The problem is that this result is not enough, we have to replicate the information for every time. We are
lucky because sometimes the noise is stationary, i.e. the distribution is the same for every time instant.
But also in this case we still don’t have a complete description of the noise, the probability is not enough.
We can demonstrate that the probability is not enough. To demonstrate, let’s consider three different
amplifiers and for every time someone has given us the probability density. It is enough?

If I consider t1 and t2, we are considering a real amplifier, and if the distance between t1 and t2 is small,
the voltage is similar. But if the time distance is different, there is no way they are similar. So when the
time difference is very small, there will be a strong correlation between the two values, while if tau
increases the correlation drops.

X(t) Case A : outputs of a set of noisy amplifiers,
Stationary noise x with prob. density p,(x)

Values x(t;) and x(t,) measured on a sample waveform at different t; and t,
are random values with equal probability density p(x) and they are:

* in practice identical for ultra-short interval t
* somewhat different for short interval t
» different and independent for longer interval t

NON-STATIONARY noise :
the probability density varies in time p=p(x, t)

BEWARE!!

the probability density p alone does not give a complete description of the noise,
in fact different cases can have equal probability density p

Now we consider another example with the same probability density in t1 and t2. If the probability
density is enough to describe the noise we would obtain the same result. This time, instead of the output

Case B : output of a set of low-noise amplifier,

A x(v) with random baseline offset x with prob. density pg(x)

Source (1)

T T
Source (2) // V/ >
T
Source / ;

57 4 4

4 tI/ tz/

Values x(t,) and x(t,) measured on a sample waveform at different t; and t, :

+ they are random values with probability density pg(x);
* they are equal for any interval t, short or long

Case B is different from A, but it can have equal probability density pg(x) = pa(x)

14



of the amplifier we take the offset. The offset is not deterministic, it changes from one amplifier to the
other. At t1 I will have an offset different for each amplifier, I cannot predict it, it is different for any
amplifier. Then I take t2. The offset is constant in the amplifier, we don’t know it but it is a number.
Hence as soon as we have the offset at t1, it is the same for any time. It is different for the replicas but the
correlation between t1 and t2 of the same replica is 1 for all the time. The problem is that the probability
density in each point is equal to the probability density of the previous point. Hence just the probability
density is not enough to describe our problem.

COMPLETE DESCRIPTION OF THE NOISE

Source (1)

* For a proper description of the noise the marginal probability p,(x, t)dx of having
a value x at time t is NOT sufficient

* The joint probability pfx;, X,,t; t; )dx, dx, of having a value x; at time t; and
avalue x, at time t, must also be considered

We have infinite ensembkes and, for each replica we have the time and amplitude axes. We can define
the probability density for each time, which is the probaibilty to have a certain value at a certain time,
but it is not enough, so we need the joint probability, which is the probability of having a certain value at
time t2 if [ have a certain vale at time t1. So it is a function of x1, x2, t1 and t2 (x1 and x2 are amplitude
values).

The problem is that the formula is vary complicated to write and manage.

So our description of noise is composed by marginal probability (probability having a certain value at a
ceartain time), and for stationary noise the probability density doesn’t depend on t, it is the same for any
time (definition of stationary).
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Then we need the joint probability because the marginal one is not enough. Again, if the noise is
stationary, so the marginal probability is the same for all the times, it is possible to demonstrate that the
joint probability depends only on the time interval tau, and not on t1 and t2, we are interested just in the
distance between them.

A full description of the noise is obtained by knowing:

* The marginal probability density p,(x) = p(x; t;) for everyinstant t,.
For stationary noise p,, does NOT depend on time t; : pp,= Pm(X)
* The joint probability density p; (x;, X ) = pi(x1, X5, t3, t) = pi(X1, X2 ty, t1 +T)
for every couple of instants t; and t,=t; + 1.
For stationary noise p; depends only on the time interval 7, NOT on the time position t;

Time average and ensemble average

We can do a thing we did with the signal. We try to extract some numbers that are summary of some
properties. E.g. the energy of the signal or the shape of the signal, which are two different things. With
noise we have two directions, time and ensembles, so the complexity is squared.

Since we have two direcitons, we can try ti simplify in both.

The upper formula in the image is similar to the one of the energy, but we don’t have the square, we are
just averaging over time the signal. The average in time is indicated with <x>.

x(t) S lim

0

< x > Average of x over the time J’T x(t) d

-T

X Average of x over the ensemble

e}

x= f x p(x)dx

-

We have also the ensambles, so we can try to extract also the average on ensambles. We are at one time,
and at this time we have the probability of having a certain value. I sum all the values and divide by the
number of values, but the problem is that in the ensemble direction the system is dominated by the
statistic, so we cannot sum all the possible values, because we have an infinite number of replicas. So the
idea is that we go from -inf to +inf of the probability. So we are making an average of the probability
density.

DESCRIPTION OF NOISE WITH 2> ORDER MOMENTS OF PROBABILITY DISTRIBUTION
Normally, the average over time of the noise is zero, and the average on the ensembles is zero.
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Noise is different from disturb and from offset. In general, the background like an offset of the noise is
not a problem, because it is deterministic and we can remove it. The problem is that associated to the
background there is noise, but the background itself is not a problem, we can measure it and remove it.

So we want something different than the averages on ensembles and time. We need the moments.

The moment of the marginal probability is the integral from -int to +inf of the x*n times the probability.
It is the same as before, but we increase the power, so the average is the moment of order 1. The same
can also be done for the joint probability.

NB: for clarity, we call here the two statistical variables x and y instead of x; and x ,

Moments of a marginal p(x) m,= x" = f_mm x™ p(x)dx
Moments of a joint p(x,y) mj = xJyk = f:ﬂwxi y*p(x, y)dxdy

* the m, (and my ) give information on the features of the distributions
* asthe order (n or j+k) increases, the information is increasingly of detail

Let’s consider a description of noise limited to the 2° order moments, i.e.

Mean square value (or variance)
my, = x2 = f_oomxz p(x)dx = 0,?
Mean product value (or covariance of x and y)
myy = Xy = [__ xyp(x, y)dxdy = 0,y
NB: it is obviously
m,=my, =1 the total probability is normalized to 1
my=my,=X =0 =9y =mgy; the mean value of noise is zero
As soon as n increase, we increase the detail we can observe. We will stop at n = 2 so the average and
the moments of the second order.

n = 01is 1, because it is the integral of the probability, so it is useless.

The mean square value is the moment of the second order, but if we look at the equation, we are
calculating the energy. We are making an average (integral from -inf to +inf) of the noise squared (we
multiply by the p(x) to make an average on ensembles). Saying that we are computing the energy is not
correct because it is not the energy of the noise, but the ‘energy’ of the noise at a particular value. Only if
the noise is stationary it holds for all the times, otherwise we need to compute this integral for every time.

It is not energy but power because if we square it we will have an infinite value.

Source (1)

« for every instant t; the mean square value (or variance) x2 (t;) = 0% (t1)
For stationary noise x2 does NOT depend on time t;

» for every couple t; and t, = t; + T the meanproduct x (t1)x (t2) = x (£1)x (t1 + 1)
For stationary noise it depends only on the time interval r, NOT on the time position t;
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We can compute the variance of the noise for each particular time instant. If the noise is stationary, the
variance is a number and doesn’t depend on time, it is the same for all the times.

We are not interested in the covariance, but something different. With the signal we computed the
autocorrelation, now we compute the mean product, in the ensemble domain, not in the time domain.
We are making an average on ensembles the product of x(t1) and x(t2). Also in this case, if the noise is
stationary, the product depends only on tau and not t.

AUTOCORRELATION OF NOISE

Autocorrelation is not exactly the same as for the signal, it is just a matter of name. Now we are not
making an average on time, but we are making the multiplication between two different values on
different ensembles. It is autocorrelation Rxx(t1, t1 + tau), which are the two variables.

It is a function of t1 for nonstationary noise. If the noise is stationary, we can write Rxx(tau).

The autocorrelation of the noise is, again, an ensemble value, while the signal autocorrelation is a time
average.

Furthermore, if we compute the autocorrelation at zero tau value, we get the mean square value. It is the
same connection we had for the signal. One variable still remains and it is t, if the noise is not stationary.
If the noise is stationary, the autocorrelation in zero gives us the information about the power.

POWER SPECTRUM OF NOISE
We want to move in the frequency domain also for the noise.
Noise has power-type waveforms (divergent energy — <o)
which have statistical variations from waveform to waveform of the ensemble.
By averaging over the ensemble of the autocorrelations of the noise waveforms,
the concepts of power and power spectrum introduced for the signals

can be extended to the noise

% |T(f)\

T x%(a) o xp X(a) T
P = lim fT da T]Hngoffw—ZT da—?lgnf df =
=meTle 1 0| T(f)| af =% |T(f)| of

Therefore, the Power Spectrum of the noise is defined as
xr (1|

: X X

Sx(f) = lim —

and the noise power is

o
P= | sdpar
—co
for a noise x the autocorrelation R,,(t) is an ensemble-average,

for a signal x the autocorrelation function K, (7 ) is a time-average

The noise mean square value it is the autocorrelation witht=0

xz(t) = Rxx(t' O)

for stationary noise it is constant at any t

F = R,,(0)
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We can extend the power concept just making an average on ensembles (already said), and also the
autocorrelation is done with an average over the ensembles. So why not trying to make the same thing
for the spectrum? For the signal we had a certain definition of the power, why not adding an average on
ensembles also for the spectrum from the formula for the signal power spectrum?
We can bring the average on ensembles inside the integral (after Parseval theorem) and we can define the
spectrum as x. It is the same definition but with an average on ensembles added.

Has this formula connections with the previous ones? We never defined the power of the noise, but the
means square value, the connection between means square value and autocorrelation is the similar I had
between power and autocorrelation in signals. Now I'm defining the power, which is the integral of the
spectrum (last formula) and it is the same I had with the signal.

We are just making, at this point, an average on ensembles. For signals, the power spectrum is the Fourier
transform of the autocorrelation. Let’s do the same for noise with also an average on ensembles.

The problem is that the autocorrelation we considered was Kxx, not Rxx. It is not the autocorrelation we
defined for the noise. We would like to merge all together and understand, e.g., the relationship between
Rxx and Kxx. If they are different, which is really useful?

By averaging over the ensemble we can extend to the noise

also the second definition of Power Spectrum introduced for the signals

Sx(f) = F[Kyx (D))= F[ Kyx(7) | =

f:o xr(@)xp(a+t)da

= F[lim s
T—oo 27
e T T )
= Flim 227 = Jjm xxr @)
T—oo 2T T50

The Power Spectrum of the noise can be directly defined as
lxr ()|
R s T
Sx(f) = lim =~

The noise power is:

[ee]

P= [ s(naf =Fa®

-0

P
Ko MEHBER /

Autocorrelations similarities
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So the power spectrum is the Fourier transform of the autocorrelation Kxx averaged over samples. Kxx
is x(t)*x(t+tau) averaged over time (<x(t)x(t+tau)>). The problem is that the directions of time and
ensembles are different and uncorrelated. So the average on ensembles can be brought inside the average
over time, but if we do so we get Rxx ().

S\(f) =F[ Ky (1) ]
K, ,(t) results from the double average,
first over the time K, (1) =< x(t)x(t + 7) > then over the ensemble

It can be shown that the order of averaging can be exchanged

°
X K, (D= <x(Dx(+D)>=<xDE D) >=<Ry(t,t+7)> @ﬂreeg/
The power spectrum thus is related to the ensemble autocorrelation function
Sx(f) = F[< Ryx(t,t +7) >]

* For non-stationary noise S,(f) can be defined with reference to
the time-average of the ensemble autocorrelation function of the noise.

* For stationary noise there is no need of time-averaging: it is simply
< Rz (tt4T) >=Ru(r)
and

Sx(f) = F[R,x(7)]

Now we can say that the spectrum is the Fourier transform of the autocorrelation in ensembles averaged
over time.

Sx(f) is one power spectrum, it is a function of frequency but it doesn’t have the issue of ensembles,
because we are making the average over ensembles.

Moreover, for stationary noise, the autocorrelation of the noise, averaged on time, because the noise is
indeed stationary, it is exactly the autocorrelation of stationary noise.

Hence we can write the final equation, saying that the spectrum is the Fourier transform of the
autocorrelation (if stationary).

It is an important formula because we have a connection between the power spectrum and the
autocorrelation and we can say that the power is the integral of the spectrum, so it is the variance of x
because a property of the Fourier transform is that the integral in the frequency domain is equal ot the
value in zero in the time domain of the anti-Fourier transform, which is the autocorrelation.

So if the noise is stationary, the power is the mean square value.

BILATERAL AND UNILATERAL SPECTRAL POWER DENSITY

There is a problem, that is the integral is made from -inf to +inf, but we cannot apply this formula. we
are making, in fact, an error of factor 2.

When we made the computation of the power, we integrated from -inf to +inf the spectral density. We
liked this because we can use the Parseval theorem and move from the frequency domain to the time oan
vice versa. The problem is that Sx(f) is symmetrical, so we will consider two times the spectral density.
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To solve this issue, the spectral density used so far is called bilateral spectral density Sxb(f), and we call
two times the bilateral density and the unilateral spectral density.

* The mathematical spectral density S, (f) defined over- < f<oo,
is a bilateral spectral density S,; (f)

attention is called on this fact by the second subscript B

* The noise power computed with the bilateral density S,; is
P= [, Sw(fdf
/T
* Since S,z (f) is symmetrical S,g(-f) = S,g(+f), itis
P =2 [ Ss(f)af = [ 2S.e(F)df
* A unilateral «physical» spectral density S,,(f) = 2S,5(f) is usually employed in
engineering tasks for making computations only in the positive frequency range

* The noise power computed with with the unilateral density S, is

P= [ Su(Fdf

/0

NOISE SOURCES
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NOISE IN DIODES

Real case: Shot current in a diode

* Random sequence of many independent pulses,
i.e. «shots» due to single electrons that swiftly cross the junction depletion layer

* Pulses have rate p, charge q and very short duration T},
(shorter than transition times in the circuits)

* «Shot» current has mean value I=p-q

* Shot current has fast fluctuations around the mean, called shot noise

(or Schottky noise, after the name of the scientist who explained it)
The technical literature reports that shot noise has constant spectral density

S,u = 2ql | unilateral density in0<f<oo

A carrier travelling in a junction generates noise. P is the probability that a carrier crosses the junction
and q is the charge of the carrier. In this case the average value of the current is not 0, so we have noise
associated to a current that is not 0.

Shot noise is associated to any current in the diode, including the signal current and background current.
Moreover, the spectral density we compute is the unilateral one.
Shot noise is not exactly 2ql.

Diode noise in forward bias

Let’s start from the formula of the current in the diode. We have to pay attention when we are at zero
bias; at zero bias we have the exponential term is 0, so we have Is — Is and the current is 0. At this point
the noise is not zero, because the ‘zero current’ is positive current plus negative current, and in noise we
sum the square > we have two times the noise in the normal case (4g]).

qV. qv.
I = Is(ekT — 1) = [gekT — [

The diode current is the result of opposite shot components with mean values:
a) — Is reverse current of minority carriers, which fall down the potential barrier

ﬂ
b) Is ekt forward current of majority carriers,which jump over the potential barrier

* The mean current is the difference of the components
* The independent current fluctuations are quadratically added in the spectrum
qv
Sauv(f) = 2qlsekT 4+ 2qls = 2q(1 + I5) + 2qls = 2ql + 4qls

* Inforward biasitis [ > Is and the spectrum is

SnU(f) & qu

* At zero bias itis I=0 and the spectrum is T
TXANPt
Snu(f) = 4qls \242

The zero bias condition has to be studied for low voltages applications in IC.
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NOISE IN RESISTORS

* The voltage V between the terminals of a conductor with resistance R shows
random fluctuations that do not depend on the current /

* The technical literature reports that this noise has voltage spectral density S,
constant up to very high frequency >> 1GHz: denoting by R the resistance and by
T the absolute temperature it is
S,u(f) = 2kTR (bilateral)

* This noise can be described also in terms of current in the conductor terminals:
denoting by G = 1/R the conductance, the current spectral density is

Siv(f) = 2KkTG (bilateral)

* This noise is known as Johnson-Nyquist noise, after the name of the scientists
that first studied and explained it.

* Itis generated by the agitation of the charge carriers (electrons) in the conductor
in thermal equilibrium at temperature T

We are using the bilateral power spectral density. The resistor noise is 4nv/sqrt(Hz) for 1k resistance.
Same reasoning can be applied for the velocity of light, which is 30 cm/ns.

WHITE NOISE

IDEAL «white» noise
is a concept extrapolated from Johnson noise and shot noise
defined by its essential feature:
no autocorrelation at any time distance t, no matter how small

AR
Ryn(1) =S - 6(0) /area Sp
and therefore constant spectrum - > '
[
Sn(f) = Sb
>f

In reality such a noise does not exist: it would have divergent power n? — o

REAL «white» noise has

* Very small width of autocorrelation, shorter than the minimum time interval of
interest in the actual case and therefore approximated to zero

* Very wide band with constant spectral density S, , wider than the maximum
frequency of interest in the actual case and therefore approximated to infinite
A white noise is a noise whose autocorrelation is a delta. The problem that it has infinite power,
because in a stationary white noise the value in zero of the autocorrelation is the power and it is infinite.
In fact, if we make the Fourier transform of a delta we get a constant, so the spectrum is flat and hence
the white noise has infinite power.

So white noise is something that doesn’t exists in real world, the white noise will always be limited by
someone else.

So we need to approximate the white noise. To define if a noise is white or not, we can say that if the
autocorrelation function is narrow with respect to the duration of the signal, that is equivalent to say if
the signal is constant over my bandwidth of interest.

Moreover, we might also have non stationary noise, and non stationary white noise. Since it is white the
autocorrelation is a delta, and non stationary means that it changes time by time, and the thing that
changes of the delta is the area. Also in this case it doesn’t exist.
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Also in non-stationary cases the IDEAL «white» noise
is defined by the essential characteristic feature:

no correlation at any finite time distance t, no matter how small,
but the noise intensity is no more constant, it varies with time t
thatis
the autocorrelation function is &-like,

but has time-dependent area §,(t)

Rpn(t, t + 1) = Sp(t) - 6(1)

R

nn

/ area Sy(t)

v

Filtering white noise

For clarity, let’s consider a discrete case:
linear filtering in digital signal processing:
* Sample n; at t; and multiply by a weight w,,
* sample n, at t, = t; +T; and multiply by a weight w; and sum
* and soon...

The filtered noise ng is
_ _ vN
Ny = Wiy + Woly + o= Yo Wiy,

and its mean square value is

2

- 2

ne? = wiPng T+ wy np2 + LA wing s wong + wing s wang 4o =
= wy?ng 2 + woln,? + . wy WyTt Ty + WywaTi g + oo

What I can do is changing the weight of my samples depending on what I want. I'm making a linear
superposition changing the weight of each information. For the noise we need to square and make the
average on ensembles (we have also the cross products).

If the noise is white, the autocorrelation is a delta, which has an infinite value at t = 0 ad 0 for any other
time. So if the distance between two samples is different from zero, the two samples are uncorrelated. So

the average of the cross product will be zero.

Moreover, if the noise is stationary, so the mean square value is the same for any point, we can make the
sum. If the noise is not white doing this is more complicated.
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— 5 2 2
2 =wiing T+ wy mp2 o wpng s wong Fwing cwang + o =
= WP 2 + wotnyZ + . Wy Walli Tl + Wy W3l Tig +...

If noise atinterval T; is not correlated, then all rectangular terms vanish
ity = Ty =+ =0
and the result is simply a sum of squares, even in case of non-stationary noise
W =win 2 +wtn,2 + .=
= 21,'(\1:1 szn_kz
If the noise is stationary
nE=mienge e =nt

there is a further simplification

E =n? (W12+ w2l + )=

= n? Eﬁ:l w2

we will see later that also with continuous filtering white noise brings similar simplification

Band-limited white noise
Every time we will have something that limits our bandwidth, the amplifier, the PCB and so on.

Let’s consider a single pole. The autocorrelation is the formula x, which is exactly the double exponential.
The problem of this noise is nothing in particular, but it is not a delta. However, if tau is very small it
seems, but it is not a delta. It is for sure not flat in the frequency domain. So this is not exactly good for
the approximation of the white noise.

The real problem is that if we think about the definition of the white noise, the autocorrelation is 0 for
any other time than t = 0. The exponential has a non-zero value for any time in the axis. So we would
like to approximate the double exponential with something that is easier to be managed, as similar as
possible to the white noise from the computations point of view. E.g., to goodly approximate a real white
noise, we would like to have a rect in the frequency domain.

* Real white noise = white noise with band limited at high frequency

* The limit may be inherent in the noise source or due to low-pass filtering
enforced by the circuitry. Anyway, in all real cases there is such a limit

* Afrequent typical case is the Lorentzian spectrum:
band limited by a simple pole with time constant T,,, pole frequency f,= 1/2nT,

] S
X Ryy(1) =n?e Te Sa(f) = 782
1+ (2nfT,)

Salf)

f'

The rect in the time domain cannot be used in the time domain to approximate the delta (for white noise)
because the Fourier transform in the frequency domain is a sinh, which goes negative. The Fourier
transform of the autocorrelation is the spectrum, and if we integrate the spectrum we get the power. The
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sinh has negative part, so if  make the integral do I get a negative power? No, so the model is not correct.
We could have used a sinh in the time domain, but it is not easy to be managed in the time domain.

Let’s consider an example to demonstrate that the model can be wrong. In a capacitor, the energy is E =
1%.*C*Vdd"2. If I have a capacitor with no voltage across it, the energy is 0. So the overall energy of the
system is E.

This energy ‘inside the box’ cannot change. Now I connect the two capacitances inside the box; each
capacitor will have Vo/2. The new energy would be %2*(Vo/2)*2C. So in theory the energy is decreased.
The wrong thing is the model. In fact, the missing energy is dissipated in the resistance of the wire
connecting the two capacitors.

The same for instance applies for LASER light modulation with a sinus. We need to have an offset,
otherwise we are like creating negative light.

Simplified description of wide-band noise
We decided that the triangle is a good approximation for the time domain (goes to 0 after a certain area),
and for the frequency domain we choose the rect.

The true R,,(T) and S,, (f) can be approximated retaining the noise main features:

a) equal mean square n? and b) equal spectral density S,

in time: R, (1) triangular approx, half-width 2T,

R..(T) _
" nZ a) equal msq noise : R,,,,(0) = n?
b) equal spectral density: [area of R,,(t)] = S;,
2T, /2 (ie. nZ2T,=S,)
> Correlation width = At = 2T,
T
S.(f) 5, in frequency: S, (f) rectang approx, half-width f,,

a) equal msq noise : [area ofi (f)] =n2
(i.e.  Sp2fp=n?%)
J? b) equal spectral density: S,,(0) = S,
Noise bandwidth: Af = 2f,

2f,

Note that A7 - Af = 1 which is consistent with S,,(f) = F[Run(7)]

If T approximate the double exponential with a rect I would like to get the same results. To have the same
results, I would like to have the same equal msq noise for the rect spectrum. I have to variables: value in
t = 0 and area. The second condition that I can apply is that the value in zero of the spectrum (in the
frequency domain) is the area in the time domain. So the value in zero in the frequency domain is the
area of the autocorrelation = I can say that at least in 0 I want the same power spectrum of the Lorentzian
spectrum, which has a shape that is not a rect.

In the time domain again we want the same msq value. As for the width, I know that the area of the
autocorrelation is the value in zero of the spectrum and so I set the product of value in zero and 2Tn
equal to that.

Hence I defined a model both in the time domain and in the frequency domain. This model is working,

but there is no link between the model in the time domain and the model in the frequency domain through
the Fourier transform.
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The idea is that someone has given us the spectrum of the white noise, which is a Lorentzian one, and
we want to approximate the real white noise in both the time and frequency domains. In the frequency
domain we want something flat up to a certain frequency, and the two approximations are the ones in
the previous image.

When we make a model we want a model that is correct and easy to use. We can use a model with a
different Fourier transform if we use it just in the time domain, we don’t need correlation with the
frequency domain, but the result we get must be the same than in the case of the real noise.

The total power and, in the frequency domain, the flat value at 0 Hz are the important parameters for the
white noise. So we have one parameter for the frequency domain and one for the time domain.

We know that the value in 0 in the frequency domain, that we want to maintain, is the integral from -int
to +inf in the time domain. Similarly, the power is the integral from -inf to + inf of the spectral density.

In the next image we have the superposition of the Lorentzian curves and the approximations.

Time — - o
R — n2 J—
i (T) =n?e o Sy = J' Run(t) dt = 02 2T,

T,=T,

— o0 1
= [ 5.0 df = Sy 3

- p

5
>

'fn fn f
1 m
Note that f, =+ f,, namely fo = 4T, - Efp

The bandwidth of the white noise that approximates our Lorentzian spectrum is fn = 1/4Tp.

Power: P = Sv*B, where B is the bandwidth. Sv = 10nV/sqrt(Hz), the amplifier has a BW 500 MHz. To
calculate the real noise, B = 2 * 1/4Tp, where Tp is connected to the pole of the amplifier (2 because
bilateral).

The real white noise has zero correlation for any time, but the real white noise has some correlation.
However, the Lorentzian shape in the time domain tells us that we have correlation at every time, and
this is not good. I'd like to have something that doesn’t involve and exponential decay time in the time
domain, or similarly, that is as flat as possible in the frequency domain.

Sb is the area of the autocorrelation, which is has to be equal to the area of the triangle, because the area
of the autocorrelation is the value in 0 of the spectral density, that I want to maintain. In the frequency
domain we would like a rect instead of the Lorentzian spectrum; the value in zero is the same, and then
the area of the approximation and of the real spectrum has to be the same. The area of the real spectrum
is the power (n"2_bar), integral from -int to +inf of the Sn(f).

So to approximate the Lorentzian spectrum with a rect we need to choose the same value in zero and a
fn value that gives us the same power.
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So for instance n*2_bar = Sb*2fn, where Sb is the bilateral spectral density ( = Suni*fn).
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FILTERING SIGNALS

* Discrete-Time and Continuous-Time Signal Filtering
* Filter Weighting Function in the Time Domain

* Linear Filters with Constant-Parameters

* Time-Variant Linear Filters

* Weighting Function in the Frequency-Domain

The filtering of the signal is very easy to be done, we need to create the weighting function.

The goal is to choose a particular time t_m in the time axis and I want to compute the value of the signal
at t_m. How do I choose t_m? So far we won’t consider this problem. What if we want the filtered value
of the signal at t_m? I can use the information of the signal that I have before t_m to improve the value
of the signal at t_m.

The past events can be used to improve the SNR. This is done with a linear system, which is a linear
superposition of different events properly weighted - we make a linear superposition of past events.

Digital filter approach

Filtered Signal
y(t)

Signal
x(a)

METER
acquisition of
y value at time t,,

FILTERING

+ Linear filtering = the superposition of effects is valid

* The output is a weighted sum of input values x taken at various times a
with weights that do NOT depend on the input x

In discrete-time filtering (e.q. in digital signal processing DSP)

y(tm) = wix(ay) + wax(az) + wax(as) + -+ wpx(ay) = Z wix(ay)
k=0

n
)’r(fm) = Z Wi X
k=0

If the weights are the same set wy, for any t,,, (for any acquisition time)
it is a constant-parameter filtering ; otherwise, it is a time-variant filtering

I have a lot of numbers from the past and I want them to create the new value. I can sum the samples
with proper weights. The weight must not depend on the input signal (if a filter has the weights depending
on the signal we are considering adaptive filtering), and it is not constant.

Then we just take the output as sum of each sample times a weight. We can define two types of filters:
- Constant parameter filter: the weight that I use is the same for all the t_m.
- Non Constant parameter filter: the weight that I use is different as a function of t_m.

It is a digital approach because we are using samples.

DISCRETE-TIME SIGNAL FILTERING

We want to create a filtered signal creating a filter. The idea is someone is sampling the signal and I have
just to define the weight for each sample and then, in order to create the output signal, I create the
samples, multiply by the weight and make the sum.

This is for the digital approach.
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Signal Filtered Signal
Xg{a) ¢ METER
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CONTINUOUS TIME SIGNAL FITLERING
The equivalent of the sum in the digital approach but in the analog one is the integral, while the weights
are translated into weights as function of the integration variable.

instead of a sum of discrete values we have a sum of continuous values
WXk w(a)x(a)
—_yn tm
¥(tm) = Xk=o WiXi y(tm) = [ wla)x(a)da

x(o)do !
:
W tr
Weighting 0

1
> a
1
w(a)x(a)da

tm
y(ty) = j w(a)x(a)da

Output

t t

m

Just to be clear, the integral might be from -inf to +inf, and it seems strange because +inf is the future.
But this is done e.g. because we want to use the Perceval theorem. To extend the integral, we simply
consider the weight function as equal to 0 after t_m, so that we can extend the integral to +inf.

I need to find a way to choose t m such that the SNR is maximized.

We notice that the weight function is indeed a function, we take the input, multiply by it and make the
integral.

WEIGHTING FUNCITON OR MEMORY FUNCTION
It is a function that gives the weight for every time that I have to apply to the function. It is called also

memory function because it gives the amount of memory that I have in the past of the signal.

The idea is the one already introduced before, multiplying and then integral.
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A weighting function is defined, which for every element x(a)da of the input
denotes the weight w(a) given by the filter
w(a) is also called memory function of the filter

S
y(tm) = f_tZ; w(a)x(a)da &—:"ﬂ"BER/

x(a)da |
: S
V fm
Weighting 0

I =
>a
1
wia)x(a)da

tm
y(tn) = j w(a)x(a)da

Qutput

>

t t

m

CONSTANT PARAMETER LINEAR FILTERS
Linear filter is needed because we use a linear system. Constant parameter means that the weighting
function is the same for all the t_m. All the analog filters, e.g. the RC filter, are constant parameters filter.
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construction
5(t-ay) 1‘ - -
1 L.
T 7t
a 1
11 Y tm
b-response 1
1
hit-ay) ; hit,, - ay)
} >
1 t t
Single point 4 : m
wlay) = hity,—ay) ) '
e T t

Weighting function
S-response shifted to t,,
and reversed

Complete function
w(a) = h(t,—a) X

&

>

- 0
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Let’s consider a LP RC filter. We will use a graphical approach to define how to create the weighting
function.

I take the time axis, I choose (or I'm given) the t_m and I want the value of the weighting function at
time alpha_1. I have to apply a delta at time alpha_1 and I look at the delta response at alpha_1 of the
LP filter.

Then I take the value of the delta response at t_m and I use it as the value of the weighting function at
time alpha_1. This is what is done in the image above.

If I make this calculation for the different times I get the last graph x.

If I change t_m, the weighting function is simply translated, because for a constant parameter filter the
weighting function has to be the same (in terms of shape) for all the time instants.

We notice that in this case the weighting function is not so different from the delta response of the LP
filter, but it is in the opposite direciton.
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Weighting function
for acquisition at t;
w, (a) = ht,,; —a)

Weighting function
for acquisition at t,»
w, (a) = h{t,,, —a) tms

For constant-parameter filters the weighting function for any t,,, has
a) always the same shape and

b) always the same time position with respect to t,, .

In other words, when t,, is changed w(a) changes in a very simple way :
“it walks with t,,, just like a tethered dog follows his boss”

We know that the output of any filter is the convolution of the input times the delta response of the filter.
It seems, from a graphical point of view, that the weighting function is the delta response, shifted and
flipped. Can we confirm this mathematically? The response is in the image.

Input signal x(t) « Output signal y(t) = x(t) * h(t)

We have seen that for constant-parameter filters (but NOT for time-variant filters !)
w(a) = h(t, - a)

This conclusion is confirmed analytically. The weighting function w(a) is definied by

y(ty) = [ x(@)w(@)da

But for constant-parameter filters (and NOT for time-variant filters !)
tm
X yltw) =30 +h(© = [ x(@h(tn -~ d)da

The equations above are both valid for any acquisition time t,,, , therefore it is

W(“) = h(tm - (X)

In x the output is the convolution of the input and the delta response and it is actually the definition of
the convolution (it should be from -inf to +inf, but we can have the weightening function to 0 after t_m).
The result is that the weightening function is indeed the delta response flipped and translated.

A weightening function equal to the delta response would be impossible, because we cannot weight the
future.

TIME-VARIANT LINEAR FILTER
It is a filter that changes as a funciton of the time, not as a function of the input. It is the opposite of the
constant parameter filter. One example of this filter is a switch added to a CR.

Let’s consider an RC (not CR!) and a switch. I have also to decide when to open and close the switch.
I want to understand the weightening function of this situation.

Again, I apply a delta, I study the effect of the delta on the output at the time t_m and I use that value as
a value of weighting function for the time where I applied the delta.

I have the switch, I apply a delta, and what happens is that I have a decay time because the switch is
closed and then, when the switch is open, there is no current and so the response remains constant.

So I create the delta response and if I apply another delta I will have a different situation.
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Now I have to retrieve the value of the weighting function. At t_m the value is 1, but now I don’t have
to mirror the delta response, it would be wrong. In fact, if I apply a delta when the switch is open, the
output is always 0. This is the reason why when the switch is open the weighting function is 0 (x).
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Let’s now do the opposite. The approach is exactly the same. So I apply a delta, i look at the output and
use that vale for the weighting function.
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WEIGHTING FUNCTION IN THE FREQUENCY DOMAIN

The concept of acquired value y(t) as a weighted sum of components
can be extended to the frequency domain. Parseval’s theorem
oo 00

j Q2(t)dt = [ APA ()df = f ADAC-Pdf

—00 —co

can be extended to the product of two functions a(t) and b(t)

f a(t)b(D)dt = f ACHB (S = f A(P)B(-P)df

Denoting by W(f) = F[w(t)] we have

y(tn) = x(@) - wl@da = [~ X(f)-W(-f)df

The value y acquired at time tm at the filtering system output can be considered

« either as a weighted sum of instantaneous input values x(t)
with weights w(t)

* oras a weighted sum of Fourier components X(f) of the input signal x(t)
with weights W(-f) = F[w(-t)]
‘What done so far was in the time domain, but we want to switch to the frequency domain. For the
frequency domain we use Parseval. A*(f) is the conjugate of A(f). The same theorem can be applied if
a(t) and b(t) are two different funcitons.

Summary

* For constant-parameter filters (and only for them!) the weighting function
is simply the &-response function reversed and shifted in time.

* That’s NOT true for time-variant linear filters, which do not have a unique &-response.
The shape of the &-response depends on when the &-function is applied to the input
during the evolution in time of the filter.

* The weighting function in linear time-variant filters may be difficult to compute,
but it always exists.

* For filters that vary in time with simple law it is fairly simple to compute the
weighting function, in particular for switched-parameter filters (see previous examples).

* Switched-parameter filters undergo abrupt changes at the transition from
a time interval to the next one, but within each interval the parameters stay constant.

* The values of electrical variables (voltages, currents) before and after the switching
must be carefully checked because they can be discontinuous, i.e. they may exhibit
abrupt variations at the switching time.

In the end, what is t_m? For a constant parameter filter it is very easy to be chosen, because the result of
a constant parameter filter is the result of the convolution. To maximize the SNR, the value of t_m to
choose is the maximum of the output, because the noise is always the same, and to maximize the SNR I
have to maximize the signal.

For non constant parameter filter it is harder. The output of a non constant parameter filter is not the
convolution, but it is a number, not a function. To apply a non constant parameter filter we have to firstly
change the weighting function, because it changes as a function of t_m. To choose the weighting funciton
we have to choose t_m first, then we have to understand the weighting function at that t_ m and apply
the formula.
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FILTERING NOISE

We need to extract the power of the noise, to understsand the type of noise we are dealing with, and the
shape of the noise, thanks to autocorrelation.

MATHEMATICAL FOUNDATION TO MANAGE NOISE — NOISE FILTERING

Our goal is to derive the autocorrelation of the noise.

I have a noise and a filter, and an output noise. We want to understand the output of the noise at the
output of the filter, in terms of autocorrelation and power.

Someone gives us the autocorrelation of the input noise Rxx, and we can write its definition (x). On the
right there is what we want to derive, mathematically, that is the autocorrelation of the output Ryy.
In the middle there’s the filter.

Input noise x(a) Output noise y(t)

AV T
characterized by characterized by
Ryy(a,a +y) = x(@)x(a +y) X Ry, (t, t+17)=y@Oy(t+71)

The output autocorrelation can be obtained in terms of the input autocorrelation
and of the filter weighting function :

Ryy(tlﬁ t2) = y(tl)Y(tZ) =

= [ st@wi@da- [ x@w.)dp = || @ - wi@w,(§)da df =

= ff Ry (a, B) wi(@)w,(B)da df

We have the data x, but this formula is connected with the weighting function, and we can calculate the
output as a function of the input and of the weighting function.

We can write the output autocorrelation at two different times t1 and t2. The first integral is at time t1,
then second at t2, and then we take the average of ensembles.

An average on ensembles is something related to the statistics, but w1l and w2 are not statistic variables,
so we can bring the average inside the integral and average just the statistic variables x(alpha).

Them x(alpa)x(beta) averaged on ensembles is the autocorrelation of the input. So the autocorrelation of
the output is the integral of the autocorrelation of the input times the weighting functions at t1 and at t2.
This is the formula that gives us the output noise in any case.

Starting from this formula, we change the name of the variables to prepare it for stationary noises, where

the autocorrelation depends only on the difference between two time instants, and not on tl and t2
independently.
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by setting in evidence the intervals of autocorrelation at the input y=p —«
and at the output ©=1t,—1t; can be expressed as

Ry, (ty, ty +1) = ff R (a,a+y) wi(a)w,(a + y)da dy

and in particular the mean square noise at time t; is

x |72 = Ry, (61, t1) = f f Rex (@ & + 1) w () wi (@ + y)dat dy

NB: these equations are valid for all cases of noise and linear filtering,
that is, also for non-stationary input noise and for time-variant filters.

Once the substitution is performed, we can rewrite Ryy. At this point we need to define the power, that
is the mean square value of the noise, i.e. the autocorrelation at tau = 0. We will end up with the
expression X, which is the power of the noise only if the noise is stationary. The power of the noise is a
number, but here we have a function of t1, so it cannot be power. If the noise is stationary, the mean
square value at any time is the same, but if it is not stationary it is different, and to compute the power
we need to take an average on time of all the possible mean square values.

This formula holds for any linear filter, not for adapting filter, because to derive the expression x we used
the weighting function.

FILTERING STATIONARY NOISE
In a stationary noise, the variance doesn’t depend on the time instant, and the autocorrelation depends
only on the time distance between two time instants. The noise is the same for every time instant.

So we can say that the autocorrelation of the input is just a function of gamma, time distance.

In case of stationary noise the input autocorrelation depends only on the time interval y

Rxx(av a+ y) = Ryx ()’)

The output autocorrelation is correspondingly simplified

Ry (to ty +7) = f f R () Wy (@)W, (a +1)der dy =

= [[Retr) [ wat@wa(a + v2ddhay

NB: with stationary input noise:
a) a constant parameter filter produces stationary output noise.

b) a time-variant filter can produce a non-stationary output noise!
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The autocorrelation of the output still is a function of t1 and tau. It makes sense because the input noise
is stationary, not the output one. if the filter is a constant parameters filter, also the output is, but in the
case of a non-constant parameter filter the output won’t be, because we are changing the filter as a
function of the time.

We notice that the inner integral is the autocorrelation function. Going on with the calculations:

(ve]

Ryy(ty,ty +1) = j Rex(1) j wi(@wa(a + Y)da dy

—00 —0co

Denoting by ky,,( ) the crosscorrelation of the functions w;( a) and w,( a)
buaw) = [ wi(@waa +Pda

We can write

[ee]

Ry, (ty by +1) = j Roe(y) - Kapwy (¥) dy

—00

For the mean square noise we must consider the autocorrelation k;4,(c) of wy( o)

[ee]

x |¥2(t) = Ryy(ty, ty) = J’Rxx(y)'kllw()’)dy

—Co

To compute the autocorrelation of the output we take the autocorrelation of the input, the
crosscorrelation between two points and we make the integral. Formula x holds for any filter.
k11w is the autocorrelation of the filter.

With stationary input noise and for any linear filter (i.e. both constant-parameter and
time variant filters) the output noise mean square value can be computed

(oo}

Y2t = _f Rx(¥) - ks (v) dy

-0

By the Parseval theorem extension and recalling that:

Flky1, (0] = |W1(f)|2

the output mean square noise can be computed also in the frequency domain

oo

ymo:fxmwmvww

(oo}

@
Reengey |
—=

The Fourier transform of the autocorrelation, the power spectrum, is the absolute value of the weighting
function squared. This is useful because we want to compute the mean square value in the frequency
domain, because ewe know already how to compute it in the time domain. Using the Parseval theorem
we can get it.
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FILTERING WHITE NOISE
It is stationary, so we remove alpha, and to identify that is white we consider the area Sb times the shape,
which is a delta. We need to plug this in in the original formula.

Formula x is still in the case if the noise was not stationary.

The fact that White Stationary noise has constant intensity (power)

Rxx(af a+y)= Rxx(Y) =Sp-6(y)

further simplifies the equation of the output autocorrelation

00

X [Ryy(ty,t; +7) =S, j wy(e)wy(a)da =Sy - kqzw (0)

—co

°
and of the output mean square value Rfr‘féﬁg&-
R/

y2(t)) = Sp - kg (0) = S, J w2 (@)da

—

By Parseval theorem we have also

0

[ ]
- R
=S, [ as \",—“’ifﬁ/

—00

k12_w is the crosscorrelation at 0 time, because we are considering a delta for the white noise, but still
there is a distance between time t1 and t2.
Then, the mean square value, if not stationary, at time t1 is like in the formula.

Since then I want to compute the power, I want the autocorrelation with the same time in 0, so we have
Sb and the autocorrelation of 11, so the two times are the same (k_11).

Summary

The output mean square of a filter that receives stationary noise can be computed

in the time domain as in the frequency domain as
yi(t) = f Rox(¥) - k11w (¥) dy yi(ty) = J’ Se(f) - WL (DI df

and in case of white noise, i.e. with

Rf %> Rxx(y) =8,-6(y) Sx(f) =35
HeNgep »
T Reney,
| e
v A 4
V) =5l O =5, [ w@de|  [FE =5, [warar

In general, the output mean square value is the integral of the product of the autocorrelation of the input
and of the autocorrelation of the filter in the time domain. The only constrain is that the noise is
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stationary. In the frequency domain we consider the spectrum of the noise and the weighting function
squared.

FILTERING NOISE WITH A CONSTANT PARAMETER FILTER

It should give us the shape of the white noise limited by a single pole. In a constant parameter filter, the
shape of the weighting function doesn’t depend on the time t_m, but the function (not the shape) changes.
Moreover, a constant parameter filter is a delta response flipped and shifted.

The constant-parameter filters:

* are completely characterized by the 6-response h(t) in time and
by the transfer function H(f) = F[h(t)] in the frequency domain

* have weighting w,,(a) for acquisition at time t,, simply related to the §-response

wp(a) = h(t — a)

* therefore have
(W (H)I* = [H()I?

They are PERMUTABLE. In a cascade of constant parameter filters, if the order of the
various filters in the sequence is changed, the final output does NOT change.

They are REVERSIBLE. A constant parameter filter can change the shape of a signal, but
it is always possible to find a restoring filter, that is, another constant parameter filter
which restores the signal to the original shape.

Hence the squared absolute value of the weighting function is the absolute value squared of the Fourier
transform of the delta response.

Furthermore, constant parameter filters are permutable, i.e. we can change the order. If we have e.g.
three different independent low pas filters, it doesn’t matter the order in which they are placed.

In addition, they are reversible. If we apply this filter, we can always go back, doesn’t matter the filter we
are using, because we can always design the reverse filter. This is possible because in a constant parameter
filter, the zero in the transfer function is just one.

Constant parameter filters with stationary input noise

We start from the general expression for the autocorrelation, then we replace the weighting function at
time t1 as the delta response at time t1 flipped and shifted. Then the delta responses are just a function of
alpha and beta. The second integral is the convolution between the autocorrelation and the delta response
at t2, but since the delta response is the same for any time instant, just h(beta). Then we have again
another convolution with h(alpha).

In the end, for stationary noise, the autocorrelation of the output is independent on tl1, so it is stationary
also the output. h(gamma) * h(-gamma) is the autocorrelation of h, k_hh(gamma). Rxx(gamma) is the
autocorrelation of the input. Hence in the frequency domain, the output spectrum is the product of the
input spectrum and the absolute value squared of the delta response.

It makes sense because the Fourier transform of the autocorrelation of the noise is the power spectrum.
The Fourier transform of the autocorrelation of the delta response is the absolute value squared of the
Fourier transform, so everything is coherent. But if I want to compute the power, I need to compute the
value in 0 of the autocorrelation.
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The output autocorrelation is

Ryy(tt) = [| Rect@ ) i @wa(Bdad = [| Rexla ) hier = h(e, - )da df =

)

= J‘Q'l(tl - a)s f Ryx(a,B) - h(t; — ﬂ)}ﬂ = Ryex (@, B) * h(B) * h(a)

and taking into account that:
* the stationary input autocorrelation depends only on the interval y = — «
© dp=dy
* da=-—dy
* the output autocorrelation is also stationary and depends only on the interval t

|Ryy(T) =Ry (1) * h(y) * h(=y) = Ryx(¥) * kpp () | Y
and therefore REHE/{BER
[5,00 = 5.0 HDF | =

So the mean square value, the power of the noise (because of stationary also at the output), is the value
in zero of the autocorrelation.
Then I can write the same thing in the frequency domain with the Parseval’s theorem.

From the output autocorrelation R,,,(7) = Ry, (¥) * ky,(¥) we obtain for the
output mean square value:

[oe]

F = Ryy(O) = J’ Rxx(y) khh(y)dy

—00

and by Parseval’s theorem

Y Sx(DIHHIdf

ol
1l
é\g

In the case of white input noise R, (y) = S,6(y) and therefore -9

¥2 = Sy knn(0) &:MFHBGR |

y=S, f H(F)2df

In a constant parameter filter, with input stationary white noise, the autocorrelation of the output is
stationary and it is a delta convoluted with the autocorrelation of the delta response, so it is the
autocorrelation of the delta response.

The ideal white noise that passes through a LP filter, so we have a single pole that limits our noise, we
have an output that is the Lorentzian autocorrelation. If the tau is very short, so the frequency of the filter
is high, we can say that the Lorentzian response is a delta.

If T consider the Lorentzian response, the value in zero will be A*2*tau/2, where A is the amplitude of
the response, that in a LP filter is 1/tau = 1/(2*tau).

If T consider the unilateral spectral density instead of the bilateral one (like in the image), I need to further
divide by 2: Su * 1/(4*tau) = Su * pi/2 * f_pole.

NB: the autocorrelation function has always the maximum in zero.
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LOW PASS FILTERS

SIGNALS AND NOISE

Signals carry information, but are accompanied by noise
The noise often is non-negligible and can degrade or even obscure the information
Filtering is intended to improve the recovering of the information

Filtering must exploit at best the differences between signal and noise, taking well
into account what kind of information is to be recovered. For instance: in case of a
pulse-signal, is it just the amplitude or is it the complete waveform?

LOW-PASS FILTERS

We deal first with «low-pass filters» (LPF), so called because of their action in
the frequency domain. The filtering weight is concentrated in a relatively
narrow frequency band from zero to a limit frequency; above the band-limit it
falls to negligible value.

Correspondingly, in the time domain the weighting function has relatively
wide time-width (as well as its autocorrelation).

The action of the filter as seen in time-domain is to produce approximately a
time-average (i.e. a weighted average) of the input over a finite time interval,
delimited by the width of the weighting function

In a lot of cases we manage signals that start from 0 Hz and will finish at a certain frequency, so the signal
is centered around zero; this is the reason why LP filters are important.

Moreover, when creating a filter we need to find a way to highlight the difference between the signal and
the noise. In some cases we will have a complete overlap between signal and noise and we won’t be able
to distinguish them. At this point we cannot extract the signal and we will need another approach, the
modulation. In the frequency domain, normally the signal is limited in the low frequencies, while the

noise is over all the frequency, like in the case of the white noise, or at specific frequencies.

Furthermore, a HP filter can be designed starting from a LP filter (1 — LP filter).

The idea of the LP filter is to save only a small amount of frequencies centered around zero. The effect
in the time domain is that, since I'm reducing the BW in the frequency domain, the delta response is
larger and larger. Since I'm trying to reduce the BW, I will have something larger in the time domain,
this is the intuitive idea.

Elements to create a LP filter

To understand and to be able to deal with LPF is very important because:

a)

b)

LPF are a basic element of filtering and a foundation for gaining a better
insight on all other kinds of filters and better exploit them.

For instance, a high-pass filter (HPF) can be obtained by subtracting from a
given input the output of an LPF that receives the same input. In various
real HPF, the physical structure of the HPF actually implements this scheme.

LPF are employed in real cases of filtering for information recovery

For instance, in many cases a wide-band noise accompanies signals that
have significant frequency components in a relatively narrow frequency
band around f=0.

These are not only the cases of DC and slowly varying signals, but also cases
where the just the amplitude of a pulse signal (having fairly long pulse-
duration and known pulse shape) must be measured (and not the complete
waveform)
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We are considering any LP filter, not necessarily the RC one. Other than extracting the useful
frequencies, the LP filter is used also because, let’s consider e.g. an exponential decay.

The Fourier transform of 100ns of tau exponential decay time is the LP filter, and the frequency content
can be at 1/(2*pi*tau) > signal in the order of MHz.

Instead, if we consider a rect, its Fourier transform is a sinc, and the frequency content lies the most under
the first lobe, and the frequency of the first zero to confine the lobe will be 1/T.

So the BW of the signal is in the order of MHz for both the signals in the time domain.

Let’s consider an RC as a LP filter, if the BW is 1I0MHz, the frequency to be chosen is normally one
decade after, so that the shape of the signal is not distorted and I’m cutting the noise. Then, depending,
the data we want to extract, we need to save either the shape of the signal or the amplitude after the filter.
Depending on knowing the shape or not, if known we don’t have to preserve it, the important information
to be saved is the amplitude.

If we want e.g. to save the shape of the signal, 100MHz would be ok, but to extract the amplitude is
enough the BW of the signal. Of course we are not keeping the shape, but we are cutting of one more
decade the noise. In this case, the average value of the signal is an important parameter.

RC INTEGRATOR

S-response

R N 1 —t.
y(t) FI | N : h(t) ==—1(t)e 'Tr
. MA L f t Tf
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We know the delta response of the filter and its amplitude. The other response is the step response;
sometimes, in fact, we have the output of the circuit and we don’t know how the circuit is implemented,
and applying a delta in the real world to the circuit is not easy, whereas applying a step is easy.

To extract the tau, if I have the step response, the time from 10% to 90% is exactly tau, in this way I
extract it. It doesn’t matter if the step response is not exactly exponential.

Then we know the Fourier transform of the delta response, with plot x that is the one in the linear-linear
axes. The point where we have 0.5 of the peak value, in linear scale, is the pole frequency.
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Frequency response

IHI?

IH[?=0 LIN-LIN:
=0 Linear vertical scale

\ Linear horizontal scale

. > f
[H[?

LIN-LOG:
Linear vertical scale
Logarithmic horizontal scale

5 Logf

[H[?=0

Log([H[?)
LOG-LOG (Bode plot):
Logarithmic vertical scale
Logarithmic horizontal scale

> Llogf

The LIN-LOG plot is useful for the 1/f noise. All these 3 are 3 different plots of the same response.

The power of the noise is the integral from -inf to + inf of the spectral density of the noise times the
absolute value squared of the Fourier transform of the weighting function of the filter.

The area under the LIN-LIN response is, by definition, the power of the noise. When comparing filters,
we can identify the best one by comparing the area. The one with the smaller area has the smaller noise.

We need also LIN-LOG because the previous consideration works with the white noise because the
spectral density is flat, but for the 1/f noise it is no more correct to bring out Sb of the integral, because it
is no more constant, so the first plot area cannot be used. Instead, the power is the area of the graph for
1/f noise if we use the linear-log scale.

CONSTANT PARAMETER LP FILTER

y(t)

Weighting function i _____
in time M

Wan(@) = h(ty, — @) G«

Output: can be seen as an average over a time interval = 2T; preceding ¢,

Weighting function
in frequency

Wi (HI? = H(OI?

1
W ()| = T+ @/t )2

N

Output: can be seen as a selection of the lower frequency components up to

fo
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The weighting function is the delta response shifted and flipped. Then the weighting function is equal to
an average over a time interval 2*tau (Tf = tau).

An average is take different values, sum them and divide by the number of them. In this case we are
considering a weighted average.

Again, we know the weighting function in the frequency domain and plot it, it is again the delta response.

Autocorrelation

In the time domain we know the autocorrelation of the noise, and we need the autocorrelation of the
delta response to know the autocorrelation of the output. This is the only information we need in the
time domain, the autocorrelation of the filter.

As for the noise, the autocorrelation of the noise is a delta. The autocorrelation of the noise is taken,
multiplied by the one of the filter, take the integral and we get the noise power.

NB: something times a delta is the value in zero of the other function.

If the Tn is much smaller than the filter, I can easily use a delta, so using the delta or the approximation
is the same. If Tn is larger or comparable with the filter, I cannot use a delta.

FILTER

Emmw(T) = % 9_|Tif|

v

- Rxx = SbB(Y(T) w

xZ___

72_ .
NOISE — 27, ye= J’ Ry (T) - kimw(T) dT X
T —00

The noise is considered wide-band if it has autocorrelation much narrower

than the filter weight autocorrelation, that s, if T, << T; ’/ﬁ
We can then approximate Ry, = 5,p8(7) and obtain ,/?%R;‘“
Y = Sus - K (0) = 228 ’\7\'%\;@/
Yo =9pB- mmw( ) = Z_Tf Yy \)\_;,‘a

k_mmw is the autocorrelation of the filter.
In the end if T consider the Rxx as a delta, I get the formula found before.

X formula is very important to be remembered. It is crucial in the time domain, and we need the i/0
autocorrelation, that typically is a data, and the autocorrelation of the weighting function, which instead
in general has to be calculated (for instance the autocorrelation of the RC filter is a double exponential,
i.e. Lorentzian shape).

Formula x also allows us to identify if a noise is white or not. I want I white noise because if so I can
replace the autocorrelation with the delta and use a simplified equation. To do so, I compare the width
of the autocorrelation of the noise with the width of the autocorrelation of the filter. If small, I can use a
delta and use the last formula.

Last expression y works only for the RC filter, while the one SbB*k_mmw(0) for any filter.
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Sometimes we are not interested in the shape of the signal, but other information like tha amplitude. In

these cases, the LP is even more important. However, the shape can still be used in some ways.

Frequency domain

/ ise bandwidth of the fil
| W..(f]]? b Noise an-W| tﬁo the filter
.ffn = Efp
|Wm(f)|21= |H(HI? =

FILTER - o

Sn{f)“ fpl - f B »

V= [ D) MmDIZar x

NOISE Sip . .

The noise is considered wide-band if it has spectrum much wider
than the filter weighting spectrum, that is, if its bandlimit f, >> f,

We can then approximate S,(f) = S,p and obtain

_Sie
2T

yZ =Sy flwm(f)lz dfzsbB'kmmw(O) zsbﬂ'szn

In the frequency domain we have the integral of the spectral density of the noise times the absolute value

of the Fourier transform of the weighting function squared.

If the noise is white, its spectral density is flat and we can take it out of the integral (last formula). Formula

x 1s the one to be remembered.

If the bandwidth of the noise is much larger than the one of the filter, we can say that the spectrum of the
noise is like the spectrum of the white noise, so its flat. In the end, with the last formula, we get the same

result obtained starting from the time domain.
f_fn is the equivalent noise BW. We are defining the integral of the filter as a rect area.

Noise BW of'the filter
The input must be white noise.

Noise bandwidth f;, of the filter:

defined with reference to a white noise input S, as the bandwidth value to be
employed for computing simply by a multiplication the output mean square noise

y:= Sv* szn
Since it is

yz =S * f |M/m(f)|z df = Spp * Kinmw(0)

for any LPF the correct bandwidth limit fz, is

fr = e ©

)
and in particular for the RC integrator /y
f[n :L:Efp ’R/\\i\“g\§%

ar; 2 %‘S/\‘iy/
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We need to identify f fn, which is the autocorrelation in 0 divided by 2. This is true for any filter, to the
autocorrelation in 0 is a very important parameter. For the RC filter, the autocorrelation in 0 is 1/4Tf.

RC INTEGRATOR ACTIVE FILTER

TIME DOMAIN
AL Rl -t
_ vV _ _ 2F 2 /T
Tr = RpCr Re h(t) = R T, 1(t)e ''r
Cr
1 Rp

x(t) +@ Ri — y(t) Ts R; ok

Wm(a) = h(tm - a)
FREQUENCY DOMAIN
In comparison with the passive RC: R ?
; F
« still a constant-parameter filter IH(f)V = (F)
L
* same shape of the weighting

1
1+ QnfT,)?

Rr

* dcgain= oy instead of 1 |Wm(f)|2 — |H(f)I2

@&\&\V“‘“ degain Wy, (0)] =2

In the time domain, the delta response is the same of the passive RC, we simply need to change the
amplitude both in the time and frequency domains.

This circuit is nothing more than an RC from the signal recovery point of view, because any amplification
of a filter doesn’t matter.

Our target is the SNR, and every time we have a gain it is the same for the signal and the noise, so the
SNR is unchanged.

However, the gain is also important because if we have two stages, the noise of the first stage, since it is
multiplied by the gain, dominates the second one, and we can neglect the noise of the second stage. For
us it is not important because we have just one stage.
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MOBILE MEAN LP FILTER

It is a LP filter where the idea is trying to make an average. We have an input and we want to make an
average; we are at t_m, and if we want to plot an average of the signal with the weighting function, the
result is a constant for a constant value.

The parameter of the rect weighting functions are width and amplitude. The width Ta defines the time
for the average, while the amplitude can be seen in two ways.

Normally, a gain is defined as a ratio at 0 frequency in linear filters (value of the output divided by the
value of the input).

We want the value in 0 of the Fourier transform of the rect, but we don’t need to know the Fourier
transform, because the value in 0 of the Fourier transform is the area in the time domain, which is
Ta*1/Ta = 1. In the time domain is input multiplied by weighting function, integrated. So again it’s 1.

We are setting the amplitude of the rect to 1/Ta because we are trying to make an average. If the
amplitude is changed, no more average filter but some other kind, like an integrator. Hence the one in

the image are the rect specifications to make an average.

NB: increasing the width of the filter increases the noise, but we are also increasing of a much higher
ratio the signal, so SNR is improving.

| Ta d
x(t) Mobile-Mgan lfilter y(t) o '<—>'_ 1
with averaging time T, weighting w,,(a) -I =

(constant-parameter)

* A mobile-mean filter (MMF) produces at any time t,, an output y(t,,) which is not
just the integral of the input x(t) over a time interval T, that precedes t,,,, but rather
the mean value of the input x(t) over the time interval T, that is, the integral over
T, divided by T,

* In order to obtain this, if we vary the averaging time T, we must vary inversely the
weight 1/T, (this ensures constant area of w,,(a) i.e. constant DC gain).

The MMF is a constant-parameter filter: this is pointed out by the weighting function,
which is the same for any readout time tm

We are still in the field of constant parameter filters, and it is ‘mobile mean’ because the weighting
function is moved in time.

Mobile mean LP filter is a constant parameter filter

Let’s consider an active integrator. Its weighting function, for all the time, since I have sum of all the
previous time values, is a rect to -inf (blue).

But this is not the weighting function of the MM filter, so I need to add a branch. What I do is to make
an integral delayed by a time Ta, and then I have an amplifier with gain -1 (red plot). Then if I sum the
two branches I get the weighting function of the MM filter.

The transmission line is nothing more than a cable. The charge speed in the cable is more or less 20
cm/ns.
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branch (b)
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1 N
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- T, 1
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: a
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1 L} a
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MM filter vs integrator
R e
+ iohti 1
x(t) c I weighting w,,(a) T—f
= = i a
1
Itm
\ T, I
x(t) Mobile-mean filter ————> 1
3 y(t) - o
(constant-parameter |—3 weighting w,,(a) _I_T
with averaging time T,) L

The mobile-mean filter produces an output y(t,) thatis exactly the mean value of
the input x over the time interval T, preceding ¢, .

When T, is changed, the area of w,(a) is kept constant, similarly to the case of the RC
integrator when Tj is varied (the weight is reduced; the dc gain is kept constant)

Question: can we use a mobile-mean filter as equivalent to a given RC integrator for
evaluating the result obtained by processing a signal with low-frequency content in
presence of wide-band noise?

Answer: yes, the time T, of the mobile-mean filter can be adjusted to produce equal
output rms noise of the given RC integrator.

The RC is the equivalent of an average over a couple of tau and the weighting function is not actually an
averaging one.

For the MM filter, if the width is increased, the amplitude has to be set to 1/width, and also for the RC
the amplitude is 1/tau. How can we compare the two filters?

We look at the SNR giving the same signal in input. If I set the gain equal to 1, the output signal for the
two is the same, so I have just to compare the noise, under the hypothesis that the gain of the two
filters is 1, we can do so.

So we need to define the noise of the RC filters. If I have white noise, the noise of the RC filter is the
1/(2Tf1), that is the delta times the autocorrelation in 0.

If we make the comparison, we are interested in the value in zero of the autocorrelation. The
autocorrelation of the RC is the Lorentzian spectrum (double exponential).

The autocorrelation of the rect is a triangle, and we are not interested in the shape, but in the value in

zero. So we take the rect, we multiply it by itself, so 1/Ta"2 of amplitude, and we take the integral over
Ta. The final value in zero is 1/Ta.
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In the end we need to compare 1/(2Tf) and 1/Ta. If Ta = 2Tf, the SNR of the two filters is the same, and
an RC is equivalent to a MM overt two tau of a signal., because it is equivalent to make a MM filter with
a width of 2*tau.

;|
TT(l

— T

RC integrator X a wobileean s 8

Signal: the filters have equal DC gain (unity) and produce equal output with DC signal in.

Noise: for wide-band input noise the output noise is computed as
[oe]

y2 = Spp * kmmw (0) = Spp J’ sz(a) da “
“w Ry
| o TRAMPLY
therefore, for having equal output rms noise it must be \ B4
T, = 2T

Shifting in the frequency domain, on one side we have the Lorentzian spectrum, and the Fourier
transform should be a sinc"2, because we need the absolute value squared (in the image just the modulus).

The weighting functions of the two filters in frequency domain
plotted with the same scales clearly illustrate the equivalence

W‘ A
| /(f)l | £ = 1 RC integrator
? 2wT, with RC = Ty
I 1
i O e e
| 1+ (2mfTy)?
I
I ol
A
W,
IUAGIN N 3 Mobile-mean filter
— =nuf, with averaging interval T, = 2T
f (and unity gain)
|sin 2mfT|
iy Wa(N)l = [Ho(f)] = “amfr,

In which case should I prefer the MM over the RC filter? The important thing of the MM filter are the
zeros, because at that frequencies the gain of the filter is 0 and we can filter noise at a specific frequency,
e.g. at the 50Hz of the power line.

Furthermore, when we considered the rect, its Fourier transform is the sinc, whose zero is 1/width, which
practically means that, since the rect is making an average, every time we have an integer number of
periods in the width of the rect, we should have a zero in the frequency domain, because the average is
0. So the 0 is when the average is 0, i.e. we have multiple of the periods in the rect width.
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BANDWIDTH AND CORRELATION TIME OF LP FILTERS

* The noise bandwidth f;, of a low-pass filter is currently employed for
in frequency-domain

evaluating the output noise of low-pass filters
computations.

* A REAL filter that implements such a «rectangular weighting» in frequency
DOES NOT EXIST: it would be a non-causal system, with &-response that begins

before the 6-pulse.

* A REAL filter that implements such a «rectangular weighting» in time

EXISTS: it is the mobile-mean filter with averaging time T, = T, .

* There are, however, practical limitations to the implementation of mobile-
mean filters, mainly due to the impractical features and limited performance of
the real analog transmission lines with long delay, namely delay longer than a

few tens of nanoseconds.

Other constant-parameter LP filters

For LPF filters with real poles, it is often easier to compute the noise bandwidth
in time-domain rather than in frequency-domain, because it implies simple integrals
(of exponentials and powers of t). Example: cascade of two identical RC cells

€

Ic T =RE I

27 = Sy - lwn(0) = Sp - [, h(OP de =Sy - [, (752

which integrated by parts gives
— 1
7 S
bE 4T,
Since zZ = Spp 2fn , the noise bandwidth f,, is
1

fnz‘fﬁf‘

t

t -
h(t) = —e

2

2
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SWITCHED PARAMETER FILTERS

Mobile mean filter are limited by the width, we cannot create filters with a width larger than 100ns. With
SPF we can create a filter similar to MM, but larger. The output of a SPF is not a function, we are not
making the convolution, but it is a number, because with the SPF we choose the t_m and then we
compute the signal only at that time, obtaining the result.

Once we understand how to choose t_m with SPF, we will do the same with constant parameter filters.

RC LOW PASS FILTER

Let’s try to modify the RC to create a non-constant parameter filter. This can be done by adding a switch.
Someone has to tell us when the switch is open or closed. when we choose a constant parameter filter we
don’t have to worry about the switch, in a NCPF (non-constant parameter filter), we need to define when
the switch is open and when it’s closed.

We need for instance to understand when the signal starts and ends to get when to close the switch. So
normally someone is giving us a sync, synchronization signal synchronized with our experiment. At this
point I know when to close the switch.

The point is that we don’t have always the sync, but sometimes we still create a workaround, in other
situations there is no way to know and we cannot use a NCPF.

For instance, if a system responses with an exponential, we perfectly know when the signal starts because
we have a peak at the beginning and we know when the laser is given to the sample to get a response
(time instant). If instead we send a laser to the satellite, we know when we send the signal, but we don’t
know when we will receive the signal wrt when we sent it (we don’t have the sync, hence), because it
depends on the distance. However, in this latter case the NCPF can still be used, and the workaround is
based on a repetitive approach.

Instead, there is no workaround if e.g. we are collecting a signal from a star in the sky. We are receiving
a signal that comes from the past and we don’t have any sync signal for sure.

i

b s R

A . y

:|: C

» State with S down (closed in short circuit): the circuit behaves like a constant-parameter
RC integrator; current can flow in and out of C

» State with S up (open circuit): the circuit is in HOLD, no current can flow, the charge
previously stored in C is maintained, the voltage on C stays constant.

In the cases here considered:

(a) the initial state is with S open and zero charge in C

(b) the command closes S in synchronism with the signal to be acquired
and re-opens S after the acquisition

We have to know when the switch is closed, and when it is open we hold the value stored on the capacitor.
Which is the initial state of the switch and of the capacitor? We start from a discharged capacitor and
switch open.
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We close the switch and we want to understand the weighting function. If the tau of the RC (Tfs) is much

smaller than the Tgate, the discharge finishes before the end of Tgate. The amplitude is of sure 1/Tfs
(classical RC response).

S-dOWN  mem

Ts
sup /o PR e S0 =
I
1
Acquires almost the
: 5 I w,,(a 1
Cases with «Short» Ty | - T‘( <)< r —  instantaneous value of the
SAMPLE & HOLD 1 5 6 fS  input x at the end of Ts
1
T a
1 1
1 Wp(a) |
Cases with «Medium» T, 1 ith Toor= T 1
SWITCHED-RC ! ; T
! M
|
I
1

Wpfet) ! _ «
Cases with «Long» Ty with Ty >> T, 1 L 1 Acquires a sort of average
GATED INTEGRATOR l T” of the input x over Tg

| tl,,,:’r .

It I increase the tau, we get the green result, but we have a part of exponential. The last case is if the tau
is very long with respect to the Tgate, and we get a constant value, because the discharge is very long
(extreme case of the linear discharge).

The red filter is very useful, not so good from the filtering point, and the blue one is really useful. The
green is practically useless.

SAMPLE AND HOLD

The first one is the sample and hold. This red weighting function is a S&H but it isn’t a delta. From the
math point of view, if we have a signal and this is the weighting function, to get the output of the NCPF
we need to integrate from -inf to t_m the product between signal and w_function (weighting function).
If we reduce the tau, the portion of the signal we are acquiring is reducing a lot (the response shortens)

- we get a good approximation of a delta. Then as soon as I open the switch I'm saving the value on the
capacitor C.

S-dOWN e

Ts
S-up _/_ ' _/_ " o
l
«Short» T; E W.%(ii 1;;/’!’}7 if

't

m

The S&H has unity DC gain (Cis fully charged at the input voltage within T )
W(®) = [ w(@da =1
0

The S&H has very mild filtering action, equivalent to that of a constant-parameter
RC integrator with equal time constant T . With wide-band input noise S, (bilateral)

7275 1
Yn™ = Op 2Tf

The DC gain of the filter should be 1 if I'm creating a S&H, because I want to freeze the input signal
value. In DC, the gain in the frequency domain is the value in 0, so the integral from -inf to +inf in the
time domain, so the area of the weighting function, so I need an area of the exponential equal to 1.

The area of the exponential with amplitude A and decay time tau is A*tau. So in our case the area is
exactly 1.
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As for the noise, we have the w_function of an RC, so we know the autocorrelation of the RC in 0, which
is 1/2Tf.

Real and ideal S&H

1 a

Ts
: ———
REAL S&H:
1
short | w,(a)
T,=RC
1
1
IDEAL S&H: |
R=0 c
T =0 : w, = 6(a —t,) I
! I
T
1

I

* The minimum available Ty is limited by the technology of devices and circuits
(finite R values of fast switching devices and C values required for holding information)

* S&H acquisition time = time for reaching the full output value = a few Ty , i.e. currently
some tens of nanoseconds in discrete-component circuits
some tens of picoseconds in integrated circuits with minimized capacitances

If we reduce R to get closer to an ideal S&H, tau is reduced, so 1/tau increases and we are increasing the
noise. We are picking more noise because the noise is spread over all the frequencies, and as soon as we
shrink in the tie domain the weighting function, we are spreading it in the frequency domain, so we are
increasing the BW in the frequency domain and collecting more noise. So we can approximate the filter
with a delta response, but we are also increasing the noise.

S&H equivalent model and readout noise

AN y
+ AAAl
] SR |
Te ¢
1 Tr = RC
1 I a
1
1
\ Wi(ar)
1
Vi, a
\
The output of a real S&H is equivalent to “
(and can be modeled as) the cascade of two stages:
\
Y
X _/_ y

Constant-parameter filter
(RC integrator with RC=Tj)

e

Ideal S&H
wla) =6(a—t,)

Which is the noise of the S&H?

It is kT/C, so it is independent on R. Using the bilateral noise spectral density, we know that the only
source of noise in our circuit is the resistance R. Then we know that the weighting function is the one of
the exponential and its autocorrelation (that is the double exponential).

The readout noise is the bilateral spectral density times the autocorrelation in 0, because in input we
assume to have a delta in the time domain.
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+ READOUT NOISE of a sampling circuit is the contribution to the output noise
due to the internal noise sources in the sampling circuit itself

+ Inthe S&H the main source of readout noise is the wide-band Johnson
noise of R with spectral density S, = 2kTR (bilateral)
Since

1 (tm—a) 7l
w(a) =z,¢ r 1ty —a) and k(7)) = 7, ¢

the readout noise is

2§, . = R L
- Vr? = Spg * kyw (0)=2kTR = 2kTR The
&HQ{BE
P

] —

this is just the noise generated and self-filtered by a constant parameter RC filter and
is INDEPENDENT OF THE R VALUE, in agreement wth the S&H circuit model.

GATED INTEGRATOR (GI)

+
=
=
=

S-dOWN  er—— I ¢

Tr =RC
Switch command =
I Te | o “
e .
with T >> T,
Weighting function i f e
W) | Ir
K @

rm

* For behaving as Gl (uniform weight in T ) the circuit must have T >>Tg

* Therefore, the DC gain G is inherently much less than unity

°“ T
G=W,(0) = f wh(@)da ==£ « 1
o Ty

* A Gl has remarkable filtering action on a wide-band input noise, that is, on noise
with autocorrelation width much shorter than the gate duraton 7.

* Long gate duration T is well feasible in practice, much better than a long averaging
interval T, in a mobile-mean filter

Gated because we choose when we start and end the integration. In this case I'm choosing a Tf, tau,
which is much larger than Tg, so I have a rect. Since 1/Tf is very small, the DC gain (value in 0 of the rf
frequency response) is much less than the unitary gain (Tg/Tf << 1).

Furthermore, since the gain is not 1, it is different from the other filters, so when we compare filters we
cannot just compare the noise, but we have to compare the SNRs.
A solution would be to use an active integrator to recover the gain of 1.

The GI has a remarkable filtering action on wide-band input noise because, since now we can choose
any Tg, we are reducing the BW in the frequency domain, and if so we are acquiring less noise.

Time domain and frequency domains

In the time domain we need the autocorrelation of the weighting function, because the value in zero for
the autocorrelation, for the white noise, gives us the noise at the output. The amplitude in zero is not
1/Tf, because the area of the filter is not 1, but it is Tg/T"2.
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TIME DOMAIN FREQUENCY DOMAIN
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Filtering and SNR enhancement by GI
I want to understand the gain from the SNR point of view.

INPUT:

« signal x, constantin T (DC signal)

* wide-band noise S, (bandwidth f, >> 1/T; and autocorrelation width T, << T;)
Xn? = Sp2fn = Sp/2Ty

n

OUTPUT:
Signal ys = 72 =G i.e. with gain 6= <1
— 2
:Sb 2T 2 = ﬁ.ﬁ.GZ
2Tn TG i T(;

Signal-to-noise ratio

. o1 o)
bk g

NB: the output signal increases as T; and the noise as /T , therefore

the S/N increases as the square root of the gate time /T

The input noise is not the ideal delta, we need the approximation Sb*2*fn (area of the rect in the frequency
domain), in the time domain we approximate the delta with a triangle.

For the signal output we have the input signal times the gain (we are integrating the signal, and the gain
is the area of the weighting function).

As for the noise, Sb*(Tg/Tf"2), because the noise is Sb times the autocorrelation in 0. Then I do some
mathematical tricks to extract the gain, which is a parameter that in the SNR should simplify. Then,
Sb/(2Tn) is the input noise, so I can write in the end the output noise as a function of the input noise and
of the gain.

The result is that the SNR at the output is the SNR at the input times something, which is the
improvement of the signal to noise ratio. It is a key parameter, because we are interested in improving
the SNR. We could naively say to increase Tn to increase the SNR, because the noise is a data, we cannot
change it. The parameter we can manage is Tg = if we want to increase SNR we have to increase Tg
and the SNR improves with the square root of the Tg.
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Output signal and noise of GI

| E— | i
oy iahti ’
T, = RC I Ty weighting function w,,(a )
a
1
: I X Input DC signal x,
1
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1
1
: Output signal =x,- 26 « T,
i : Vs p g Vs s s G
1
' L A / w It " ol

Wide-band input noise x,,

Output noise

An integral of a constant value is a linear value. As soon as I increase Tg I increase the output
proportionally to Tg, because I'm picking more signal. As for the noise, the noise increases with Tg, but
proportionally to sqrt(Tg), so with a ratio of increase that is smaller.

To get an active filter with a gain = 1, Tf = Tg, so the noise goes as 1/Tg.

GI COMPARED TO OTHER LP FILTERS

Fair comparison between different LPF with different DC gain G can be made by considering
the value of the filtered noise referred to the input of the filter (and the input signal). This
is equivalent to consider the output with unity DC gain (if necessary, by considering to add
further gain stages).

For a Gl this noise is

e T _ (W)Gl _ Sb
(xn )Gl - G2 - T_G

For a constant-parameter RC (inherently with G=1) that filters the same wide-band noise
Sy itis
— — Sy
2 = 2 -~
G pe = 0D e = 5
Therefore, as concerns the S/N obtained for input DC signals accompanied by wide-band

noise, Gl and RC integrator are equivalent if

T¢ = 2RC

In making the comparison, we notice that the gain is not 1, but we can normalize the filter using a unitary
DC gain for Tf = Tg (active integrator). At this point, the output of the noise is Sb/Tg.
We get, as a final result, that if Tg = 2RC the two filters have the same noise in output.

NB: we cann apply a GI only if we have a sync signal.
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RC integrator

We consider here filters with equal DC gain of unity, hence with equal output signal.

With wide-band input noise S, the output noise is

yZ =Sp- kmmw (D)
therefore, Gl and RC have equal output noise if

TG=2RC

The following is the plot of the RC (red) and of the absolute value squared of the weighting function of
the GI filter (blue). The two are very similar. If we compute the areas of the two we get the same value,

because we get the same noise iif we have the same area, the same gain.
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With T; = 2RC they are equivalent for:
* the S/N obtained with wide-band noise and DC signal input

the attenuation of high-frequency disturbances in general

However:
* The Gl has zeros of W (f) at f; = k/T that can be exploited to cancel specific
disturbances at known frequencies (radio frequencies or mains frequency and

harmonics)
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AVERAGING FILTERS

- Discrete time integrator (DTI)
- Boxcar integrator (BI)
- Ratemeter integrator (RI)

DISCRETE TIME INTEGRATOR

We want to study digital filters to compare them with the analog ones. The DTI is the average; from an
analog point of view, the average is the GI with amplitude 1/Tg and duration Tg. For the digital average
Ts is the distance between two samples, P the weight of each sample and Tg is the width of the equivalent
analog filter, which is Tg = N*Ts.

The other hypothesis is that 2*Tn << Ts. The width of the autocorrelation of the noise, 2*Tn, much be
much smaller than Ts. If this condition is satisfied, since the autocorrelation ends in a very small time,
the samples of the noise are totally uncorrelated in the time domain.

It is the discrete-time equivalent of a continuous gated integrator with gate T = N T

Signal s,

1
HE
to Integratorr
P P : w(a)

a

Weighting
outline

a
* Samples taken with sampling frequency f;=1/T, i.e. at intervals T, within Tg

* Input: DC-signal s, and wide-band noise n, (autocorrelation width 27,<< T;)
* Every sample is multiplied by P and summed, up to a total N =Tg /T, samples

For the GI, the SNR improved with a factor of sqrt(Tg). Now we want to demonstrate that the SNR of
the DI increases with something like sqrt(N).

The output of the signal is the input one multiplied N times the weight P. The DC gain is NP, which is
not 1. If weset P =1/N, itis 1.

As for the noise, we are making the sum also of the samples of the noise (n_xk is the sample we are
considering). Then we compute the square value of n averaged on ensembles.

With white noise, the Gl gives S/N « \/T_(, ; we show now that the DI gives S/N o VN

The output signal is
sy =N-Ps, (that is, the DC gainis G=N"-P)

The output noise is n, = SN_P-ny and

; > - Bl e —_—
Ny? = P2(Nyy "+ Myp? o4 NygNag + ) = P2( My ? + Nyp® + o+ Mgl + )
The noise samples are not correlated

Myillaz = MypNyz =+ =0

and the noise is stationary 1% = Nyp? = - =N, 2
Therefore

- 222
ny2 = N-P*n,?

By summing N samples the signal is increased by N and the rms noise by VN
The SNRis thus improved by the factor VN

L
(E)y ool o W L um (%)x &M;‘{BER

N — —
n,z N-P2nz2
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If noise samples are not correlated, cross products are zero. Furthermore, if the noise is stationary, the
square vale is the same.

Finally we ca get the SNR_out, which depends on the sqrt(IN).

Discrete time averager
We want to compare the digital and analog approach, so we need to set the same gain and equal to 1.
Therefore, the signal is the same.
An averager is simply a discrete-time integrator with sampling weight P adjusted
to give unity DC gain, thatisG=N-P=1
oo L
TN
and therefore output signal equal to input
5y, = S,
The output noise is reduced to

ny? =N- P?n,? :E-nxl

n.2

> TN

which corresponds to the enhancement of the S/N
s s
), = ().
N = Tg*fs, and the improvement of the SNR is sqrt(IN), so sqrt(Tg/Ts). In the gate integrator it was
sqrt(Tg). It seems that if we change Ts we can obtain any improvement, we have just to increase the
freqeuncy. So it seems that the digital sampling could be much better than the analog one, just we need
to increase fs. But the problem is that if we increase fs, it seems that we are increasing sqrt(N) (if stationary

noise and noise samples uncorrelated, if neither of the two hypothesis is valid the formula is not true),
but samples start to be correlated.

Example — exponential averager

It is the discrete-time equivalent of an RC integrator

Signal s,

Averager
w(a)

o

1
1 1
1 Weighting
1 1 ;
| | | X X X outline

* Samples are taken with sampling frequency f=1/T, i.e. at intervals T,

* Input: DC-signal s, and wide-band noise n, (autocorrelation width 27,<< T;)

* The sample weight slowly decays with the sample «age»: w), = Pr¥ with (1-r) << 1 X

Why don’t we try to compare also the RC with a digital filter? Can we create something that recalls the
RC weighting function in a digital approach?

NB: in this example the signal is constant, at the exam it might not be.
A digital approach is to use a sampling with a weight that goes down with a power law. Why should we

choose the equal weights situations or the decreasing weight situation?
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If the signal is constant, both the solutions can be used and we will choose the one that maximizes the
SNR. If the signal is not constant, but it is neither a very fast signal (e.g. the temperature of a room), so
it changes slowly over time, to maintain the noise uncorrelated we can use only a certain amount of
samples. The idea is to take more samples over a larger time giving a high weight at the samples near to
where I'm observing the situation, and less weight to the samples back in time, which are less correlated
with the current temperature. This is better than using a lot of samples in a short window close to t_m.

If instead the signal changes as a square wave, it is instead better to use constant weight if I need to sample
each change time interval. The idea of the exponential decay time is to increase the amount of time for
the average but if the signal changes over this time we decrease the weight of the last part of the filter. If
the signal is constant it is better to weight all the samples with the same weight.

Now we can make the computations (previous image). The low is the x one, and it is a power law with
a specific constraint.

For the signal, we have to sum all the samples, but each sample with the correct weight. The sum from 0
to infinite of "k is 1/(1-r), so the DC gainis P * 1/(1-r).

Same approach for the noise. Also here we can use the two hypothesis on the stationary noise and
uncorrelation of samples.

Output signal Sy =Sy P XL Ur = Sy -* P—) Y (i.e, DC gain G = P—’ )
Output mean square noise
nyZ = P g + 1% g + o+ g 2+ e+ kel g )

The noise samples are not correlated (T i1, = 0 for k=j)

and the noise is stationary (nyp? = N2 = =n,2)

Therefore
1

1-r2

n2=n2-P2(1+r*+ ..+r2k+ ) =n2 p%
The SNR is thus improved to

1+1
. 177 1—r
/z r: J

But the attenuation ratio r is very close to unity ( 1 —r) << 1 hence ( 1 + r) =2 and therefore
(3),= @), |-
N, T\, J1-7r
The condition 1 —r << 1 is used in x. The result is the blue formula. This expression is no more valid if

we don’t have an input signal that is constant, because the noise part is the same for any signal, but the
signal part is different. If the signal is changing we have to take into account its change in the expression

Y.

DISCRETE TIME INTEGRATOR VERSUS GI
The idea is to show which is the best, that will be the analog filter. It is more intuitive to understand this
in the frequency domain rather than in the time domain.

Firstly we define our system. For us, a digital filter is an analog filter. The first contender is the GI, and
the digital filter is a series of delta, but a delta is an analog filter. It is important to consider a digital filter
as an analog one because we don’t know anything so far about digital filters, and we have all the formulas
for the analog filters.

If T want to compare in a fair way the two filters, I need to set the same gain, and the best solution is 1.
So the amplitude of the GIis 1/Tg, and P = 1/N.
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we(a) | | ; : : Gl Gated Integrator in Tg
1 1 1 1 I a
| P B (4 P P | DI Discrete-Time Integratorin T,
! T 1 k G
o . | | : N =Tg/T, = £iTs

a

INPUT: DC signal s, and wide-band noise S, (bandwidth 2f, >> f, , correlation

width 27, << T;) with rmsvalue n,? = S,2f, = S,/2T,

With unity DC gain s, = s,

+ Noise reduction by GI fny(;' = ’P/ Z’—I“
* Noise reduction by DI nyp? = /nxz /\/N

The other hypothesis is that we consider the BW of the noise much larger than fs > we consider the
noise white, so that we can use Sb/2Tn.

If we set a unity DC gain, for the Gi the improvement of SNR is the blue expression, and for the DI it is
the red one.

The improvement factor is
+ /N for the DI, increasing with the number N of samples taken

« JT¢/2T, forthe Gl, constant for a given T

QUESTION : is it possible to attain with a DI better S/N improvement than
a Gl just by increasing the number N (i.e. by using very fast sampling electronics)?

ANSWER: NO !!
In fact, since N = T /T for having N > T; /2T, it must be
T.. < 2T,
in these conditions
* the samples are no more uncorrelated

* the improvement factor is no more given by VN

* There is still an improvement factor, but it must be evaluated taking into account
the correlation between the noise samples.

* Itisanyway (S/N)g £ (S/N)g with (S/N)p = (S/N)g as N is increased, as we can
demonstrate in time domain and in frequency domain

Since one of the digital filter goes with sqrt(N) and the other one as sqrt(Tg/2Tn), it seems that we can
obtain any improvement of the digital filter with N. In theory also if Tg goes to inf the SNR improves,
but to do so we need the signal to span to infinite values, but the signal is typically limited in time.
Moreover, a large Tg means that we need a lot of time to wait for the filter. So it seems easier to increase
N for the DI, but also here just increasing N is not improving SNR because at a certain point it is no more
correct that the samples are uncorrelated.

If Ts < 2Tn, so if we sample noise that starts to be correlated, we still have an increase of SNR, but the
improvement factor is no more sqrt(IN).

The limit of the improvement of the SNR will be the SNR of the analog filter. In fact, if we increase the
number of delta we are approximating the analog filter that is the rect.

Time domain

We have to compare two different filters. The first thing to do is plotting the weighting function of both
filters and the autocorrelation (in time domain the product of the autocorrelation of the filter and of the
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noise integrated from -inf to +inf gives us the output noise in the time domain). For the GI (or MM filter)
we have the autocorrelation k_ww of the filter and Rxx the one of the noise.

Gl Gated Integrator DI Discrete-time Integrator
(normalized to unity DC gain G=1) (normalized to unity DC gain G=1)
Ryx Ryx
X n? ___ ne? o
- ~|= 21,
A . \ .
K Koo
L ['/\ E I'""T“- o N=T5/T
Tg >t N AAMTTTT T, >
=T T t

ZOOM aroundt=0

ey (0) = N7,

The area of the delta x is the spectral density, Sv, times the value in 0 of the autocorrelation of the
weighting function in the frequency domain.

The weighting function of the DI is a series of delta. The autocorrelation of the comb of delta is another
series of delta, but how many and with which shape? The number of deltas is doubled and with a
triangular shape. The value in 0 is 1/N, which is (1/N)*2 * N (we are summing N delta in 0, so it is not
(1/N)"2). At this moment we are not interested in the shape of the autocorrelation, we just want the
value in 0.

Let’s zoom around 0, the autocorrelation of the filter in the analog domain is flat, because the triangle is
very flat, and the value is k_ww(0). As for the digital filter, we will find a set of deltas of amplitude 1/N,
still k. ww(0). The number of deltas we find around 0 should be 1, because the samples are uncorrelated
and since the delta tells us where we are sampling, one delta is in 0 and the other where the
autocorrelation is 0 (check the book).

In our case delta are no more decreasing like a triangle because we are decreasing Ts at so high level that
the number of delta is so high that there is indeed a decrease as a triangle, but the triangle is so huge that
at first approximation the deltas around 0 have the sample amplitude (similar to the analog case).

Now we need to perform the computations. How can we compute the noise (gain is the same so I need
to compare just the noise)?

We need to multiply the autocorrelation of the noise, the autocorrelation of the filter and make the
integral, and we want to do this both in the analog and digital domains. In the digital domain the integral
will be only in some points.

For the digital we have to multiply the series of delta times the autocorrelation, and if we multiply a series
of delta with an analog shape, we have some deltas with the value of the autocorrelation, and then we
have to make the sum. The amplitude of the delta is Ts/Tg. Then, Ts times the samples of the filter’s
autocorrelation are the area of the blue box of the following image.

This is the same result for the analog, where the area of Rxx is the result of the integral.
Now, if we reduce Ts, we are reducing the base of the boxes, so approximating the analog approach, so

getting the same noise of the analog filter and since the signal is the same, also the same SNR (if Ts >
0).
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The problem is that, ok the limit of the digital filter is the analog one, but it seems that for any value of
Ts the digital filter has the SNR smaller than the analog one, so the area of the sum of the blue boxes is
the area of the autocorrelation. This is a correct sentence, but it is difficult to be demonstrated for each
Ts (check book).

Gl Gated Integrator (with G=1) DI Discrete-time Integrator (with G=1)

A . !

Ts
Ky (0) ==
AP

>
T

1
T Tg - (sum of R, samples at Tt =0; +T5; £2Tg;....)
G

- 1 ) — 1
g =1 (area of Ryx) nk, =T (area of the scaloidthatapproximatesRy,)

The scaloid area is greater than the R, area, therefore

- _ = = 2T, —_—
2 2 _ 2 n . -
Nyp 2 Nyg = Ny T_c; with nZ > nz

b 6 as Ts =0

Hence we move in the frequency domain where we don’t need any demonstration for this.

Frequency domain

The output noise in the frequency domain is the integral of the PSD of the noise multiplied by the absolute
value squared of the Fourier transform of the weighting function, from -inf to +inf. Let’s do this for the
analog and digital filters.

TIME-Domain Weighting FREQUENCY-Domain Weighting
. T . [Wel
i >\ L ] | A
[1z Lt
with G=1 Zb, ol e .
i E 1 1 1 1
- i L1 1292112172 |2 — — — -
Free-running | | | | | I | : ™ T T T.
sampler i ) . S
ax | S
T «window» ' _ _ _ _ _ _ -i 1 ) S ! '
& normalize | i v il IT_L- -1
to G=1 | LN B [ I T >
AP S U U N O Qe L) I— R _—
sample 4 |N |N|N|N|N. I Lo i
averager ! VL M I, LT 1
with G=1 T 7 : 1
I 5! ' -—— '
< T L fs = T
N=-¢ :%
T

In the frequency domain, the Fourier of the rect is the sinc with a zero in 1/Tg and value in 0 that is 1,
which is the area of the rect (Tg * 1/Tg).

As for the digital filter, the Fourier transform of a comb of delta is a comb of delta. But we don’t have an
infinite number of deltas, but a finite one. To get a finite number of delta, we multiply the infinite comb
of delta with the rect in the time domain, so in the frequency domain I need to convolve.

Hence in the frequency domain we will have the convolution of the Fourier transform of the rect in the
position of the deltas. We can check if the value in 0 is still 1 because the value in 0 of the digital filter
was with area 1 in the time domain.

Now we have the Fourier transform of the digital filter. We multiply by the PSD of the noise (Sb) and
make the integral.
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The figure illustrates how the output noise np? is reduced and S/N is enhanced
by increasing the sampling frequency f; (for a given averaging time T; )

The integral from -inf to +inf of the product of x and y is the area of x. The digital filter has Sb limited by
fn, In the digital filter we have an infinite number of replicas of the weighting function, but we have to
consider the replicas up to fn.

At first approximation, the noise of the analog is the area of one sinc, while the noise of the digital is the
area of five sinc (from the image). So the noise of the digital filter has to be larger than the analog one,
because we are integrating more replicas.

How can we demonstrate now that the limit of the digital filter is the analog one?

As soon as I increase fs (so I reduce Ts) I'm pushing some replicas outside the limit of the noise, so ideally
we reach the output noise of the analog filter.

So when fs is larger than fn we have just one replica, but we are not so lucky because the sinc has a tail
that spans to infinite, so to get exactly the same value we need to push the replica to infinite distance. So
also in the frequency domain I can say that the limit of the digital approach is the analog filter.

Noise filtering analysis: GI vs DI

a) Aslongas fs << f:
* the noise samples are uncorrelated
+ each line of |Wp|? is identical to |W;|? of the Gl (with same DC gain G=1)
+ ahigh number N, of lines of |W},|? falls within the noise bandwidth 2f,,
* the output noise of the DI is N; times that of the Gl
W = ;IG_Z N
With good approximation it is
Ny = 2fu/fs
and it is confirmed that for uncorrelated samples the S/N increases as VN
— 1 ny?

2 wimrg =
npt =nyt e =y

b) When f, becomes comparable to f,, or higher
* the previous result is no more valid.
* the output noise must be computed with the actual noise spectrum

g = f S IWp(HIPdf = ng?

* The figure shows that np? is always higher than n;?2 and attains it for f; — o

lim np? = ng?
{ea]

fs=

We have a DC gain = 1 so we have to make the integral of the number of replicas that fall in fn, the
bandwidth of the noise. This number can be computed saying that the output noise is the analog one (i.e.
the integral of one replica) times the number of replicas. The number of replicas N_L = 2* fn/fs.

In the end we must have the same result in the frequency domain that we got in the time domain.
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BOXCAR INTEGRATOR - BI

This simple analog circuit combines two functions:
1. Sample Acquisition by gated integration
2. Exponential averaging of samples

The circuit employed is the same of the Gated Integrator, but with a fundamental
difference: the capacitor is NOT RESET between the acquisitions.

G
S-down._ | | Ta

B TTeTa i,
= = [ Ly et PRI 1 i
B Weighting r r =
Te=RC>>T; wala) H I Tp H T Tr Tr "

* In T, the Cis in HOLD state: nothing changes, no memory loss and no new charge input

* InTg the discharge of C (memory loss) reduces the previously stored value by

the factor " = €~ T6/TF_ NB: r does NOT depend on the interval T,

We want to combine the digital and analog approaches. We will acquire the signal with the GI but,
instead of acquiring it one time, we acquire it several times and make a digital average of the acquired
signals. This because sometimes just one acquisition of the signal is not enough, because its amplitude is
too small. This is not possible always, but e.g. for the fluorescent emitted by a single molecule this can be
done. For the satellite signal it is the same, since it is at a fixed distance, we can send a pulse and repeat
the measurement several time.

The idea is to use just the GI (circuit on the left, RC and a switch, the buffer is not compulsory) and
removing the reset of the capacitor from it to get the GI. In fact, one of the hypothesis of the GI was to
start with a capacitor empty for every measurement. In our new system we remove this hypothesis.
Since it is a NCPF, we need to define how to control the switch. We do it periodically, without
discharging the C.

With a new filter, the first thing to dimension is the weighting function. We create it with the usual
procedure. Instead of closing just one time the switch I open it and close it without the reset. I apply a
delta every time the switch is closed to create the weighting function. The capacitor can discharge only
when the switch is closed, so from +inf to -inf the capacitor is discharging (theoretically exponentially).

The other important thing when defining a new filter is the autocorrelation of the noise and gain.

From the gain standpoint, we are integrating the exponential decay time, but only some slices (it is sliced
because of the action of the switch) of it so the area will be lower than the full area of the exponential
decay time.

The gain is the value in 0 in the frequency domain, that is the integral from -inf to +inf of the weighting
function in the time domain. But the w_f is the exponential decay time just sliced and split, so the area is
exactly the original area of the exponential decay time, which is 1 in a standard RC. So the gain is 1.

The other parameter is the autocorrelation, theoretically. The autocorrelation is a function, but at first
level, if we consider white noise, we are interested in the value in 0. Hence the question is: which is the
value in 0 of the w_{?

We need to take the function, multiply it by itself and take the integral. The value in zero is exactly the
value in 0 of the autocorrelation of the non-sliced exponential. So the autocorrelation in zero is 1/2Tf.

We won’t compute the autocorrelation function of the boxcar because it is not useful.
Now we everything to compute the improvement in SNR.
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* Bl behaves as RC-integrator (RCI) when the switch is closed (S-down);
it is in HOLD state when the switch is open (S-up)

* In fact, the weighting function wg(a) of the Bl is obtained by subdividing wg{a)
of the RCl it in «slices» of widthT; and placing them over the S-down intervals

* G=1:the DC gain of Bl (area of wg) is unity (like that of RCI): the Bl is an averager

* The autocorrelation functions kg of Bl and k,,,zc of RCl are very different,
but have equal central value k,,, (0)
1 1

WwB (0) = kWWRC (0) ZRC Z_TF

SNR ENHANCEMENT IN THE BI
The approximation of the white noise in the time domain is Sb/2Tn, this is a data. Then we are interested
in the output of the BI, knowing k_wwB(0).

The input wide-band noise S, with bandwidth 2f,, , autocorrelation width 27,
has mean square value
1

N2 =5,
b 2T
The Bl output noise is
— — T
ny? = Sy ks (0) = Sp - 1/2Tp = ny % - ==
e
Therefore, since Bl has G=1 the S/N enhancement is

N

N

T,

L
CRCRIT

The S/N enhancement does NOT depend on the RATE of the samples
because it is obtained by averaging over a given number of samples

and not over a given time interval. In fact, counting the samples (from

the measurement time t,, and going backwards) the sample weight is reduced
below 1/100 for sample number > 4.6T./T; , irrespective of the sample rate

The SNR in output is the input SNR times sqrt(Tf/Tn). The signal in input is exactly equal to the signal
in output, we can reason only on the noise.
The SNR enhancement doesn’t depend on
the rate. and in fact the frequency of the The Bl is equivalent to the cascade of two filtering stages
)

: : a) Acquisition of samples by a Gl with same T; and T as the BI,
pulses Is not 1n the formula. which enhances the S/N by the factor

In the end we are making an average with VTg/2Ty
exponential Weight of a lot of GI. b) Exponential averaging of the samples with attenuation ratio

. . . — o~ TelTr = 1 —
So the improvement in SNR of the GI is . r=eert = 1-Tg/Tr

K which enhances the S/N by the factor

sqrt(Tg/2Tn); but we are making the
average of different GI exponentially, and Ja+r/a0-r=J2/(1 —r)= 2T, /T;
the exponential averaging has an
improvement factor of SqI’t(ZTf/Tg). NB: this factor is INDEPENDENT of the RATE of samples, because the AVERAGE
Putting them together we get the IS DONE ON A GIVEN NUMBER OF SAMPLES and not on a given time.
improvement factor of the BI. The S/N enhancement is thus confirmed and clarified

H h li . (5) _ (S) T¢ 2Ty (S) Tr
owever, there are some applications N y— N, |21, e W/, [T,

where we want to have a dependance on
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the ratio, because sometimes the information on the signal is not in the amplitude or shape, but in the
ratio.

RATEMETER INTEGRATOR - RI

The circuit is the same, but I add a buffer between the switch and the RC. If we compute the w_f, when
the switch is closed we get the RC, but when it is open, the RC sees the low impedance of the output of

the buffer, so the C can discharge through this path. So the capacitor keeps discharging, doesn’t matter if
we open or not the switch.

Ts
S-down !

T P S N s 1

P B 3 T
T c o - — I |t
L RC-weighting D ' A | =t
' @ || B L
Te=RC>>Tg H T ... ¥ a
or averaging many samples ~ ----- T B
f ging many samp RI-Weighting Irz r ]i
wr(a) Ty Tr Tk
l L o

By inserting a buffer between S and RC a new exponential averager is obtained,

radically different from BI. The integrator is no more a switched-parameter RC filter:
it is now a constant-parameter RC filter, unaffected by the switch S.

There is no HOLD state. The memory loss goes on all the time; the weight reduction from
sample to sample is 7 = e~ 7¢*Ta)/Tr — ¢~ Ts/Tr NB: r DEPENDS on the sample RATE!
+ During T (with S-down) the input is integrated in C

During T, (with S-up) the input is NOT allowed

Again, we want to retrieve the w_f, the gain and the autocorrelation.

The w_fis the same as in the BI, but the second slice doesn’t start when the previous has finished, because
the capacitor has discharged in the meantime.

As for the gain, it is less than 1 because we are making the integral only of some slices of the fully
exponential decay time, because when the w_fis 0, the capacitor is still discharging.

The problem is that computing the autocorrelation in 0 of the RI w_f is not easy, because it is no more
the exponential sliced.

So what we can do is to see the RI as the product of a lot of GI (if Tg << Tf) and the average of exponential
decay time, but the difference is that the amplitude difference between one GI and the other is no more

Tg/Tf, but (Ta + Tg)/T¥.
TeSTiTe

S-down. i} Ta |

S T S A : N

» ’ E E I: I: i tn a
1 & A— = F
- RC-weighting™ 1 1 e ] | -
) wi(a) | 1 L T
TR=RC>> Ts Y 1 -‘_ - T o
for averaging many samples RI-Weig hti;r_g" 4] T i
we(a) Tr Tr Tr
) ’ a

The DC gain is G < 1 (the RC filter has G=1, but it receives just a fraction of the input!)

With T >> T the DC gain G is proportional to the sample rate fg=1/T;
0 s T o0 s T -
G=[ wr(a)da = T—Z o wi(@)da = r—z =T
NB: if the input signal amplitude xs is constant but fs varies, the output signal y varies.

In fact, the circuit is also employed as analog ratemeter: with constant input voltage xs
it produces a quasi DC output signal proportional to the repetition rate f
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We want to compute the area of the slices. We know the distance Ts between two slices Ts, the amplitude
of the slice that is Tg, and the area of the exponential decay time that is 1. Tf is the exponential time
constant. If Tf >> Ts, then Tf >> Tg, and every Ts I'm interested in acquiring one slice. Since Tf >>Ts,
we have like a rect in of width Ts an amplitude of the exponential decay time. The fraction of the area
that we are acquiring every slice is Tg/Ts, under the approximation of flat curves and I repeat this for
all the Ts. Then the sum of all the recto of base Ts is the exponential decay time, which is one. But each
Ts I don’t want all the rectangles of width Ts, but the one of with Tg. So in the end the area is Tg/Ts.

SNR ENHANCEMENT

The Rl is equivalent to the cascade of two filtering stages

a) Acquisition of samples by a Gl with same T; and T, as the R,
which enhances the S/N by the factor

vV T(;/z Tn
b) Exponential averaging of the samples with attenuation ratio
r=eTs/TR = 1-Tg/Ty
which enhances the S/N by the factor

{1+r {2 ’ZTR
1-r 1-r T_S_VZTRfS

NB: this factor DEPENDS on the sample RATE f; because the AVERAGE IS DONE ON A
GIVEN TIME and not on a given number of samples. The weight reduction is below
1/100 for samples that at the measurement time t,, are «older» than 4.6:T,

R

The S/N enhancement thus depends on the sample rate f;
S S T, 2Ty, S Ty
&, ~ G, 7 7 =6, i
y X n N x n

Point b) is the improvement of the digital average.

The final SNR improvement formula depends on the frequency fs. If we are interested in measuring the
rate, this is a good thing. Instead, if we are not interested in the rate, because it is e.g. fixed, at this point
using a RI is useless. In fact, if for some reasons the rate is changing statistically and we are not interested
in the rate, we cannot use this formula because we don’t get something reasonable.

To get if the BI or the RI is better, in both cases the GI is the same, so its ratio of improvement is fixed,
while we have to compare the digital average of the exponential decay time for the BI and for the RI. But
in both cases we are choosing Tf to maximize the SNR improvement.
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Passive circuit comparison — Bl and RI

S
RATEMETER INTEGRATOR

Switch S acts as gate on the
input source

Switch S is decoupled from the RC
passive filter by the voltage buffer
The RC integrator is unaffected by S,

it has constant parameters, it does
NOT have a HOLD state

BOXCAR INTEGRATOR

Switch S acts as gate on the
input source

Switch S acts also on the RC passive
filter (changes the resistor value)
The time constant T of the

integrator filter is switched from
finite RC (S-down) to infinite (S-up,

+ The sample average is done on a HOLD state)
given time, defined by the RC value * The sample average is done on a
given number of samples, defined
by the T./T; value
In both cases we have a switch, so in order to control it we need to know where the signal is > we need
the sync signal, compulsory.

Tf is a value we need to choose to understand what I want from the signal. The BI doesn’t depend on the
Tf, but on how many times I open and close the switch. In fact, with the ratemeter, after a certain time
there is nothing to integrate, the capacitor has discharged. Instead, with the BI I discharge the capacitor
only when I acquire the signal.

Active circuit comparison — Bl and RI
Since in the RI we have a gain smaller than 1, the solution is to introduce an active circuit with a gain.
these two active filters are identical to the passive ones, because, for us, the gain doesn’t matter.

R
Re DC gain G = R/R; e —
—yW— _{ AR
3 — 51 R; é
1 R,‘ F

G, P S
RATEMETER INTEGRATOR BOXCAR INTEGRATOR

* Switch S; acts as gate on the input * Switch S; acts as gate on the input

* Switch S; is decoupled from the active * Switch S; is decoupled from the
RC integrator by the buffer action of active RC integrator by the buffer
the OP-AMP virtual ground action of the OP-AMP virtual ground

* The R, integrator is unaffected by S;; * Asecond switch S, is required for
it has constant parameters, it does NOT switching the time constant T, of the
have a HOLD state integrator from finite R.C, (S,-down)

* The sample average is done on a given toinfinite (S;-up, HOLD state)

time, defined by the R.C; value * The sample average is done on a
given number of samples, defined by
the T¢/Ts value
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OPTIMUM FILTER

Which is the best possible filter in terms of SNR? It depends on the information we want to extract.

AMPLITUDE MEASUREMENT OF PULSE SIGNAL

When the signal is really small, normally we are not interested in the shape of the signal (which is known
generally), but in the amplitude and in the area. If we know the shape of the signal, speaking about the
area or the amplitude is the same, because from one we can compute the other if we know the shape.

Examples

Pulse signals can carry information, which in many cases is contained in the amplitude
of the pulse, not in the pulse shape or in other parameters (e.g. pulse risetime,
duration, etc). These cases can be better illustrated by a couple of examples

* Automated analysis of biological cells
Fluorescence methods are often employed. A cells in diluted solution are labeled
with a fluorescent dye that attaches specifically to a given component of the cell.
The cells are conveyed by a laminar stream in a small duct and cross a laser beam
that excites their fluorescence. The fluorescence pulse emitted by a cell has
intensity proportional to the quantity of component in the cell. By measuring and
classifying many pulses (i.e. by collecting the measurement histogram) the
distribution of the component in the cell population is obtained.

* lonizing radiation spectrometry
The radiation detectors generate for each quantum of radiation received (e.g. a
Gamma ray) a current pulse with charge proportional to the quantum energy. By
measuring the charge of each pulse and collecting the histogram of measurements,
the radiation distribution in energy is obtained (the energy spectrum). It is thus
possible to identify radionuclides in the source (e.g. Plutonium in the elements of a
nucler reactor); to measure their quantity; to monitor radiation doses etc.

Ionizing radiation spectrometry

It is a typical case of pulse-amplitude measurement , let us consider it in more detail

* Detectors of ionizing radiation (e.g. Gamma rays) generate a current pulse signal for
each radiation quantum received

* The charge of the pulse signal is proportional to the radiation quantum energy

* The electronics has to measure the charge of each pulse, not its shape or position in
time. In fact, the initial time of each pulse is known (signaled by auxiliary electronics)
and all pulses have equal shape, i.e. equal waveform with normalized amplitude

* The precision of the measure is limited by noise sources in the detector and in the
electronics

* Measurements of many pulses are collected and classified by size

* The distribution of the measured pulse-charge reflects the distribution in energy
(spectrum) of the radiation. The energy scale can be calibrated by measuring
radiations with known energy.

* The energy spectrum of the radiation gives information about the radioactive source
(type and quantity of radionuclides, etc.)
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FILTERING TO MEASURE AMPLITUDE OF SIGNALS BESET BY WHITE STATIONARY
NOISE

We know the shape but we don’t know the area and amplitude, but we have a LF signal, so if we compare
the signal with the autocorrelation of the noise, the autocorrelation of the noise is much smaller than the
one of the signal, so we can assume the noise as white (i.e. in the frequency domain its BW is more
extended than the one of the signal).

In the frequency domain it means that the BW of the noise is much larger than the BW of the signal.

Let’s consider first a basic case: pulse signals accompanied by stationary white noise.
This ideal case is a good approximation for real cases where pulse signals are accompanied
by wide-band noise, i.e. noise with

* Narrow autocorrelation, i.e. width much smaller than the signal duration

*  Wideband uniform spectrum, i.e. upper bandlimit much higher than that of the signal

TIME DOMAIN FREQUENCY DOMAIN
() IYi5)1?
Signal Waveform Signal Spectrum
t i
Ri(t) = 54 8(1) S(f) = Sg
. ) . Wide-band Noise Spectrum
Wide-band Noise Autocorrelation |
r f

The filter we need to design is probably a LP filter, because the information in the frequency domain is
around 0. This is a rect in the time domain, for instance. The question is: is it possible to design the best
possible LP filter?

(t) TIME DOMAIN FREQUENCY DOMAIN
Y 12
Wrm Signal Spectrum
t
Ry(1) = S6(1) S,(f)=Ss  Wide-band Noise Spectrum
Wide-band Noise Autocorrelation =~ |=———————————— —\
wit) i W) f
a suitable Filter:
Gl with duration
| = to the signal
t ‘ f

For a measurement of pulse amplitude, a filter has to collect most of the signal and
reject most of the noise. It’s intuitive that its action should be:

* asseenintime, more or less to average the signal and the white noise over the time
interval occupied by the signal

* asseen in frequency, more or less to pass the low frequency range occupied by the
signal and cut the higher frequency range where only white noise is present

This means that it’s a low-pass filter (LPF) tailored to the signal (see Gl example above)

The only information that we have is the shape of the signal. We can write the signal as y(t) = A*b(t),
where b(t) is a function with an area of 1, so A is the amplitude or area.
One information is the shape of the signal, the other information that we have is that the noise is white.
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We want to compute the optimum filter theoretically. The signal is defined as y(t) = A*b(t), where A is
the area of the signal, and we know the shape of the signal, b(t).
The goal is maximize the SNR.

Low-pass filters tailored to the signal are suitable, but we’d like to know more, since
basic questions are still open:

* s there an optimal filter and if yes, what is it?
* Ifyes, what is the best obtainable result? That is, what is the optimized S/N and
what is the smallest measurable amplitude?

The issue is to find out the optimal weighting function, since it completely characterizes
a linear filter.
Let’s set in evidence the signal area A and the normalized waveform b(t)

y(©) =4 b(r) With J_wb(t)dt:l

Signal M -
o Filter out u(t,,) OutputSignal

2(t) Acquisition
—— ;lLE:)R? of filter out f[————>
o <SP AN — m(@) :

at time t,, na(tm) Output Noise
Noise Ry, (1) = Spd(r)

N

S tm
QUESTION: is there a weighting function w,,(a) that optimizes 5 _ tlim) ?

OPTIMUM FILTERING OF SIGNALS IN WHITE NOISE

The signal at the output is the integral of the product between the weighting function and the signal itself.
As for the noise, it’s the integral of the autocorrelation of the noise times the autocorrelation of the filter.
Since we are considering WN, the autocorrelation of the noise is replaced with a delta.

For the signal, the integral can be rewritten considering the cross-correlation multiplied by the area.

The signal and noise acquired in the measurement are

7w = [ Hwn@ide=a- | b unaia=A-kp(©

Z Tm = | R(@ k@ =5+ | wh @i = S5 k()

Therefore (5)2 wd(ty) ) 2 1y (0)
s T C)

The w,,(at) that optimizes S/N for a given pulse shape b(a) is found by exploiting the

known property of correlation functions (based on Schwartz’s inequality)

Iy (0)
X KO k() (0 thatis gy = kee(®

where the maximum is achieved with filter weighting proportional to the signal shape

Wy (a) < b(a) which normalized to unit area is wp(a) = b(@)

kg, (0)
fenw (0)

and gives  max[k2, (0)] = k3,(0) that is max

} = kpp(0)

The Schwartz inequality x proves that the maximum of the SNR is when w_m(alpha) = b(alpha), that is
when the filtering weighting function shape is proportional to the shape of the input signal.

Every time we choose a matched filter it is almost compulsory to write equations z.
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SCHWARTZ INEQUALITY - MATCHED FILTER
For the optimum filter we are weighting the noise and the signal, but since the noise is always the same,
better to increase the weight of the filter when the signal is high and reduce it when the signal is small.

K

Signal

a " ny(a) Noise

a i”“h 'iI““I i I
e

a
The best result in measurements of the amplitude of signal pulses accompanied by
stationary white noise is obtained with weighting function equal to the signal shape.
This conclusion is intuitive: since the noise is uncorrelated, the output noise power is
the weighted sum of the noise instantaneous power at all times; since this power is
equal at all times, it is convenient to give higher weight when the signal is higher.

The filter with weighting function w,,(a) matched to the signal shape b(a)

Wi (@) « b(a)

is indeed called MATCHED FILTER

The matched filter is so called because the shape of the filter is the same of the signal, i.e. is the optimum
filter.

Optimum SNR for WN
Sb is the bilateral spectral density. k_bb(0) is the autocorrelation in 0 of the signal.

The optimum S/N provided by the Matched Filter is

L
$\2 A2 A2 [ &7,&’86 |
(=5 0=, [ pre2ae : R/

recalling that the energy E, of the signal A b(t) is
Ey = Azfmbz(zr) da = A? fmyz(/‘) df

we see that (S/N)?,,; is simply

(i)z _ b_y _ signal energy
opt

N " Sg  noise power density (bilateral)

Y
Rew ‘
A 57!85/; /

The first formula can be rewritten considering the energy definition.

Starting from these formulas, an interesting point would be to understand which is the minimum
amplitude of the signal we can detect.

So we want to revert the formula to get the amplitude. However, at this point we need to define a target
SNR, otherwise we cannot reverse the formula. From theory, 1 is the minimum SNR to have a minimum
detectable signal. In the real world, with a SNR = 1 we cannot distinguish the signal, at least we need a
SNR = 3.

Then we solve the equation for SNR = 1 (from theory) and we get the Amin.
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By considering explicitly the energy of the normalized signal b(t)

Ep :J b?(a) da :J’ B2(f)df
—00 {+s]
we set in evidence the signal amplitude A (the signal area)
2

(i) = A2 ﬂ
N/ opt Sg

The minimum measurable amplitude A,,;, is defined as the amplitude that gives
(S/N)ﬂm =1, thereforeitis

min —

VB r@ae 1250 ar

that is Aﬁm = (spectral density of noise) / (energy of the normalized signal)

OPTIMUM FILTERING WITH ANY STATIONARY NOISE

We are considering a stationary noise, not justa WN. Is it possible to apply the same theory? No, because
to compute the optimum filter we used an approach that worked with white noise, because writing the
noise at the output as Sb*k_ww(0) is correct only if WN.

However, we can get the same result changing something in the filter.

For CPF, they are reversable (i.e. we can always go back) and we can always change the order of the
filter. Since it is reversable, every time we apply a filter we can always go back, so we are not loosing any
original information. The information might be modified but it is the same.

We want to obtain a situation where SNR in input, we apply the optimum filter and we get SNR_best at
the output. This works only if the noise is white.

The problem is that in this case the noise is not white, so we cannot put the matched filter in the middle.
But still exists the best filter in this case, we just don’t know which is.

T use another approach. We add two blocks, 1/5(f) and S(f), where S(f) is a CP (constant parameter) filter.
Since we CPF is reversable, I apply a filter and then I reverse it and apply it again. So after the two filters
I have the same information, but also in the middle between the two CP filters, it is just changed, the
CPF cannot increase or reduce the amount of information.

The first block can be a filter that makes the noise white, making the spectral density of the noise in the
frequency domain flat. So in the middle between the two CPF 1/S(f) and S(f) the noise is white. Hence
the S(f) and BEST (that is not the matched) blocks compose the matched filter, because it brings the WN
to the optimum SNR in output.
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This is not the only way to get the best result, we can define directly the best filter with MATLAB without
making the noise white, but the important thing is to get the optimal SNR as a result.

The whitening filter is applied on the noise, but since the filter is in the chain, I’'m applying the same fitler
also to the signal. So when I design the next matched filter I will design a filter with the same shape of
the signal at the output of the whitening filter, not the original signal.

+ Optimal filters for measuring the amplitude of pulse signals accompanied by a any
stationary noise can be obtained by an extension of the solution for white noise.

*  We can begin by processing the signal and noise with a noise-whitening filter that
transforms the noise in white noise by a reversible transformation. In fact:
a) for a given stationary noise, it is always possible to find a constant-parameter
linear filter that produces such a result, since it has transfer function H,(f) such that
1
NG)
b) the transformations performed by constant-parameter linear filters are reversible.

[Hy (17 o

* Reversibility is essential: nothing is lost in the transformation and whatever is done
by the whitening filter can be reversed by the following filters. We can then proceed
towards the optimum, since we know what to do in the situation at the output of the
whitening filter: we have pulse signals accompanied by white stationary noise and we
know that a matched filter performs the optimum filtering.

+ In conclusion, the optimum weighting function for measuring the amplitude of pulses
with any stationary noise is obtained as the overall weighting function of two
cascaded filter stages: a whitening filter followed by a matched filter.

Optimum filter

Signal pe=msmsmsmmmm e s mm s mm s e :
! A-b(a) !

Adla) 1 [ Whitening Filter DIHJ\; T matched Fitter | 171¢) — ultw)

—i—) (constant par. linear) (matched to b(w)) : — AC?“'S't)'O” —>

i 1 at t,
vose VL e o | e | L

Rux(7) : Ryy() = Spo(7) i
Sdf) = e e e e !

* The whitening filter modifies the waveform of the signal, hence the following filter is
matched to this modified signal, not to the input signal!

* The subdivision of the optimum filter in whitening filter and matched filter is a useful
theoretical approach for analyzing the problem and finding the overall optimal
weighting, but it is NOT THE NECESSARY STRUCTURE of the the optimum filter.

» In principle, we find the optimal weighting by combining whitening filter and matched
filter. In practice, we can implement this optimal weighting with different filter
structures employing any kind of linear filter (constant or time-variant parameters;
passive or active; etc.)

* The wide liberty in the implementation of the optimum filter is very important, since in
many cases it is quite difficult to design the noise-whitening filter and even more
difficult to implement it, due to practical limitations of the real components (limited
linear dynamic range; noise in the circuit elements; etc.).

» For a given noise with spectrum S,(f) the whitening filter is a constant-parameter
linear filter that has transfer function H,(f) such that |H,(f)|? < 1/S.(f)
(in time domain: filter autocorrelation function k,,(t) such that the convolution with
the noise autocorrelation R,,(T) produces a 6-like autocorrelation Ry, (1) « (1) )

* The action of the whitening filter is more evident in cases where the actual noise
results from white noise filtered by some circuit. For example, consider the Johnson
noise of a resistor passed through an amplifier with upper band-limit set by a simple
pole at low frequency. The whitening filter simply reverts the filtering by the amplifier
with a transformation that cancels the low-pass pole.
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OPTIMUM FILTERING FOR HIGH IMPEDANCE SENSORS

* High impedance sensors and low-noise preamplifiers

* Noise whitening filter

*  Matched filter

* Optimum filtering for measuring the charge of pulse signals

* Optimum Filtering with Finite Readout Time

* Practical approximations of the optimum filtering

HIGH IMPEDANCE SENSORS AND LOW NOISE AMPLIFIERS
Let’s suppose to have a high impedance sensor.

High impedance sensor
It is a current generator for both the signal and the noise, and since it is high impedance we also have a
capacitor. The sensor equivalent circuit has two generators, one for the signal and one for the noise, and

a parallel capacitor.

Low noise amplifier

* Let us consider sensors that are seen by the circuits connected to their terminals
as generators of current signals with high internal impedance (typically a small
capacitance Cg with a high resistance R in parallel)

* Typical examples are: p-i-n junction photodiodes and other photodetectors
(CCDs, vacuum tube photodiodes, etc.); piezoelectric Force Sensors in quartz or
other piezoelectric ceramic materials

* They have internal noise sources (e.g. shot current noise of a junction reverse
current) modeled by a current noise generator in parallel to the signal generator

\ Sensor Equivalent Circuit - Sensor Equivalent Circuit

{ Sensor ‘ approximation with very high R
Cs
> R S, 1 Cs
I g"s 0 S () A S
XG0T E o = ©
7,/ - 7
Sensor Signal ‘ Sensor Noise }
SvA
I B
Ria Cia Ria= e

Preamplifier equivalent circuit - Approximation with very high R,

R;4 = true physical resistance between the input terminals
(NOT the dynamic input resistance modified by the feedback in the amplifier; e.g.
not the low dynamic resistance of the virtual ground of an operational amplifier)

Besides shot noise of bias currents, the S;, includes Johnson resistor noise of R,
4kT

Sig = -

The current noise directly faces the sensor current signal /g

if R, is small the S, is overwhelming (e.g. with R,y =50 Qiitis /Siz ~ 18 p A/VHz )
and other components of ./S;, are much lower (about 1p A/+vHz or lower )
Conclusion: for low-noise operation of high-impedance sensors,

it is mandatory to employ a preamplifier with high input resistance R;,

The preamp is used to read the current form the sensor. The input resistance of the preamp is the true
physical resistance, because noise is associated with physical resistances.
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If it is big we can remove the input resistance, and this is done on purpose because we have thermal noise
associated to the resistance, which in terms of current noise depends on 1/R. This noise current generator
has to be placed in parallel to the preamp noise generators, which are in parallel with the signal. So if I
reduce the resistance I increase the noise in parallel to the sensor.

If for instance we use 50 Ohm and we compute the spectral noise, we get 18 pA/sqrt(Hz). Since the noise
of the preamp is typically smaller, we are adding a lot of noise. We considered 50 Ohms because it’s the
impedance of a transmission line.

The input resistance Ria to be removed works if the preamp system is close to the sensor, otherwise we
need to use transmission lines and the 50 Ohm resistance has to be considered.

The input signal can be modelled as a delta, because even if it is an exponential decay time, sometimes
the tau is so small that it can be modelled as a delta if the signal is fast. E.g. for a pn junction a delta is a
very fast laser pulse that hits a photodiode, which gives us a pulse of current.

Si is the current generator of the preamplifier plus the current generator of the sensor plus the one of the
resistance (that has however been removed).

Equivalent circuit of high-impedance Sensor and Preamplifier
(approximation valid for very high sensor resistance Rg — o)

Q
Q _L.
z y(@) = C 1(6)

Voltage pulse

Current pulse
Q to be measured

¢ C=Cs+Cp total capacitance load
« S, =Sa voltage noise generator (wideband white spectrum)
e S = Sp+Sia current noise generator (wideband white spectrum)

At the preamplifier output:

* The voltage noise spectrum S, has two components, it is NOT white

Sp(w) =Sy +

Si
w2CE | X

* The voltage signal is a step with amplitude Q /C,

The result is that if we look at the voltage noise, it is not white. The fact that the noise is not white is due
to the capacitor ClI of the sensor, because integrating a current over a capacitor gives us a spectrum that
is no more flat. A delta of charge in a capacitor gives us a step.

The plot of the result x is in the next image. Where the 1/f noise is equal to the white noise we have the

corner frequency.
The tau associated to the noise corner is y. Accordingly, we can also define the noise corner resistance.
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log$,

Crossing of the component defines
w,. Noise-Corner angular frequency -

s, J5
§ =—t_ = ¢
s A N

T, =1/w,. Noise-Corner time constant

The = = C
y nc Wne \/§¢ L

T, and w, are fundamental parameters of the optimum filter: we will see that
T rules the duration of the filter weighting and w,,. the filter bandlimit

We define the Noise Corner resistance R,.c=\/T§” so that

« with /S, afew nV/VHz and \/E ranging from a few 0,1 to 0,01 pA/VHz
R,. ranges from tens to hundreds of kOhms

* with C, from 0,1 pF to a few pF
T, ranges from a few nanoseconds to some hundreds of nanoseconds

NOISE WHITENING FILTER
The spectral density from which we start is Sn(w), and it has one pole in the origin and a zero. To obtain

a flat behaviour I need a filter with a zero in the origin and a pole later.

The noise spectrum has log S,
* apoleatw,=0
* azeroatw,=w,=1/T,

1 14T
=y

S
S, =S |1+——=]=S|1+——
() ( mZSch) ( o T,

The noise whitening filter H,,,, must

logw

* cancel the pole withazeroatw =0 wi DI
nc .
* cancel the zero with a pole at w = w,. = 1/T,, N

w?TZ
1+ w?TZ

[Hn (@2 =

It is a simple high-pass filter

CW

__JoRwCw H
A — L :
' 1 logw
with R,C,=T, Ru / @ne =7
w>w nc — nc

This filter is the HP filter.
Since we are considering the noise, it is important the squared absolute value of Fourier transform of the

filter, because we are whitening (1/)"2, otherwise we would not whiten the just the 1/f noise.
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Whitening result

Cw T SRuCw | EPa—
Simple high-pass CR filter —-“T Hy(5) =ﬁ with | RwCw = Tac
Rw

= 52@) g (@) = S,
Is Whitening Filter
Hisi zs(t)

it makes white the noise at its output

and changes the signal into a short exponential pulse with time-constant T,

NW Filter
Q Q t
ys(©) =—-1(t) 250 =710+ Cx')(_'l'_)
I

y Q.. 1
Yx(S):(g'i - ZS(S):Z':I""—HST}IC
Cancels pole at s=0
and replaces it by pole at s =- 1/T,,

I applied the whitening filter, and we also have to consider the signal. The step in input to the whitening
filter gives us an exponential decay time.

Now the noise is white and the signal is the exponential decay time, after the whitening filter. At this
point I have to apply the matched filter (filter whose weighting function has the same shape of the signal),
and I don’t have to apply the RC filter, because the RC has the exponential decay time as a delta response,
not as a weighting function, that is the delta response flipped.

Furthermore, the matched filter with this exponential decay shape doesn’t exists because it would require
an integration for an infinite time.

Signal in output to the whitening filter

SThc

Haw

C, 1 NW Filter
—l— S ‘ i
1
Input Preamp Output NW Filter Output
(current) (voltage) (voltage)
5 — pulse Step pulse Exponential pulse
2 ar
[ Cp
K>
L e
Q t
L) = Q- 8(t) Ys(t) :g—L~ 1(t) zs(t) = 1(t) - exp (*K)
Q1 , _ QT 1
I(s)=¢Q Ys(s) =TS Zs(s) =7, 1T,

The matched filter has to be tailored to the signal at the whitening filter output,
i.e. it must have weighting function exponential with time constant T,
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MATCHED FILTER

OPTIMUM FILTER

Noise k Matched

Whitening Filter Filter [
Hpw S, Wy |

ik

In the case with finite load resistance R, the whitening filter is different but the output
signal produced is the same as with R, > o

50 =510 e (1)

nc

Therefore, the matched filter is the same in the two cases

wy = 1(t) - LE‘)&P (7L)

Thc

and gives the same result

N.

z,(s)z 2 z@ wn@de]” @212 J‘” , Q1T
opt - —o

= = wi (@)da = ==—
° Sy - fj; wi (@)da ct s, " CE2 S,

The red one is the weighting function. As for the signal to noise ratio, we write its definition (integral) for
both signal and noise.

OPTIMUM FILTERING

At the output of the optimum filter (i.e. of the matched filter) we have

«©

_ _e1 _2 10
Signal s, —jo zg(a) Wm(a)da—c e ), GXP( T )ﬂ'a 3T,

Noise Jni \/_m,\/_ fcxp 2“ F
SIN f ) F

* The optimum filter theory specifies what is the best S/N physically obtainable
and the kind of filter required for attaining it

* The optimum filter can be implemented in reality, but the filter design turns
out to be quite complex

* Furthermore, the optimum filter takes infinite time (after the signal onset) to
complete its action, which is not acceptable in practice

* lItis possible, however, to consider and evaluate fairly simple filters that
approximate the optimum filter and closely approach its performance

The signal in output is the prduct of the weighting function and the singal in input, so the expoenntial
decay time squared.

As for the noise of the matched filter, it is 1/(2Tnc), because the weighting function is the exponential
decay time, that is not the one of the RC, but from the noise standpoint having a weighting function or
the flipped one is exactly the same. Since the autocorrelation of the RC is a double exponential with
value in 0 of 1/(2Tf), for the matched filter in this case it is the same shape and value in 0.

The problem is that this filter doesn’t exists. Firstly because we are not able to develop this shape form
an analog point of view, and moreover it is an anticausal filter that lasts for infinite time. To solve the
problem of anticausality we change the t_m position with a delay line, putting it in the end of the
exponential curve and not in correspondence of the peak. The thing is that we are creating an
approximation in this way because we are cutting part of the weighting function.
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PRACTICAL APPROXIMATIONS OF THE OPTIMUM FILTERING

RC integrator approximation of the matched filter
In the image we have the delta response of the RC filter, whose weighting function is not the red one, but
the red one flipped and shifted in time.
* The whitening filter is simple and easily and exactly implemented. For completing the
optimum filter it is sufficient to find out how to approximate the matched filter.

« The features of the matched filter weighting function observed in time and in
frequency point out that it is a low-pass filter

+ Asimple RC integrator (single-pole low-pass filter) can be an approximation of the
matched filter. With RC=T,,. its 6-response hg(t) is identical to the weighting function
wp(t) of the matched filter. The RC weighting w,(t) has the same shape as wy,(t) of the
matched filter, but it’s not fully correct because it is reversed in time!

x . 1 t
i he(®) = 1(0) - F-exp (’E) &-response with T =T,

t

~1|H

we(t) = he(tp — t) weighting function for readout at t,

t

~ _
h]

* Noise filtering is equal to the matched filter, since it is unaffected by time-inversion;
the output is white noise with band-limit set by a simple pole with time-constant T, .

* Signal filtering is different from the matched filter, since it is modified by time-inversion

Let’s try to do this error anyway, using an RC instead of the matched filter.

t

w) 7o)

t
t t
up(t) = zg * hy :C%T—exp (—T—)
ne ne

RC integrator Tn

Sensor output L(t) = Q- 5(0)
current !
: . t
Preamplifier Q i 0
output C i ys(t) = o 1(t)
_ : "
L ) : =92 iy em(—L
Whitening filter o ! z5(t) e 1(1) CXP( ,,.nc)
output :

&-response of 1 I

Output of
RCintegrator

Weighting function of t
RC integftor//l wg(t) = hp(tp — t)
E t
peaking time tp = T, ‘

We tune the delta response of the RC with the same tau of the output of the whitening filter to have the
best possible RC. It is a CPF, so if I apply it I need to make the convolution of the delta response with
the whitening output.

Once we have the output of the RC integrator, I have to take t m, which is in correspondence of the
maximum of the output curve. The maximum is exactly at one tau (at Tnc). Since here I have the
maximum, I don’t have to perform the convolution but just apply the weighting function at t_m and
multiplying it with the signal in output of the whitening filter.

Now to compute the SNR we cannot use the formula of the optimum filter, but the general formula.
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Since we calculated the optimum filter and the RC has the same tau = Tnc, the noise is again 1/(2Tnc)

for the noise computation, we have just to compute the noise.

_R
The RC output signal waveform is “F(‘)‘aﬁ“”( 7,!:)

o 1Q
Signal peak value (att=T,,) sp = up(Te) =57
Noise
S/N

Comparing the RC approximation with the ideal optimum filter system we see that

2
sp =25, = 0736-5, the signal is lower
Jn:;: \Ez the noise is equal
2 .
e =1 = 0,736 -1, the S/N is lower

the performance of the filter system with RC approximation of matched filter is

about 27% worse than the absolute optimum.

Note that the loss is due to bad exploitation of the signal

If we compare the obtained SNR with the one of the matched filter (or we just compare the signals, since

the noise is the same), the SNR is 73% lower than the previous case.
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1/f NOISE

It is an issue in several applications. Simply making a measurement with the 1/f noise present it’s
impossible.

1/f NOISE FEATURES

1/f means that the spectral density of the noise is 1/f, even if in the real world it is not exactly 1/f.
From the power point of view it becomes larger and larger. Bipolar transistors have a low 1/f noise,
MOSFETSs have a strong impact due to the 1/f noise.

However, 1/f is not just related to electronics, it is an issue in several application because its origin is a
process that is common also outside the electronics.

The main difference between 1/f and white noise is that samples are strongly correlated even at a long
time distance, while for white noise two samples are always uncorrelated regardless the distance between
these two samples.

Random fluctuations with power spectral density
S(H -
o —
If1
» first reported in 1925 as «flicker noise» in electronic vacuum tubes
* ubiquitous, observed in all electronic devices

* with very different intensity in different devices:
very strong in MOSFETs; moderate in Bipolar Transistors BlTs;
moderate in carbon resistors; ultra-weak in metal-film resistors; etc.

* observed in many cases also outside electronics:
cell membrane potential; insulin level in diabetic blood; brownian motion;
solar activity; intensity of white dwarf stars; ocean current flux;
frequency of atomic clocks; ... and many others

* Basic distinction between 1/f and white noise:
time span of interdependence between samples
for white noise: samples are uncorrelated even at short time distance
for 1/f noise: samples are strongly correlated even at long time distance

As said previously, 1/f is to the power of alpha in reality, but it really doesn’t matter at all if we just use
1/f, it is still a good approximation.
With 1/f*2 it’s easy to whiten the noise, while if f is to the power of 1 it is very difficult to whiten it.

The 1/f comes from the release of carriers trapped in the channel of a mosfet but with different times. In
general, when we have events happening at different times, their sum is the 1/f noise.
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1
The real observed power density at low frequency is often not exactly o —
i1
but rather & —|f|“ with a close to unity, i.e. 0,8<a <1,2

anyway the behavior of such noise is well approximated by 1/f density

1/f noise arises from physical processes that generate a
random superposition of elementary pulses with random pulse duration
ranging from very short to very long.

E.g. in MOSFETs 1/f noise arises because:

carriers traveling in the conduction channel are randomly captured by local trap
levels in the oxide, stop traveling and stop contributing to the current
trapped carriers are later released by the level with a random delay

the level lifetime (=mean delay) strongly depends on how far-off is from the
silicon surface (= from the conduction channel) is the level in the oxide
trap levels are distributed from very near to very far from silicon,
lifetimes are correspondingly distributed from very short to very long

1/f NOISE SPECS

P is the intensity, but it is a constant that is not known generally. Normally in a datasheet we have the
frequency corner of the integral of 1/f. To make the power we have to make the integral from 0 to +inf
of P/f (we are using the unilateral, otherwise from -inf but with the modulus). Here we have the first
problem, because normally we have also the white noise in our system.

Since we have the white noise we can define the frequency corner, that is the point where the 1/f noise
crosses the white noise. Clearly, it is better to have a small frequency corner so that I can increase the
portion of the spectrum where the noise is just white. But there is also another reason; in fact, we have
less noise if we decrease the frequency corner. Every time we shift the frequency corner to high
frequencies we are increasing the noise.

+co

P —

* Spectral density Sf(f) = ? noise power nj% :j ? df (with unilateral Sf)
0

+ circuits and devices have both 1/f noise S¢ and white noise Sg

Linear diagram Bode diagram

~ |

S - P Log S S=5Sp+-
. 5_53+f | N S

dB 1o

10° 10° Logf

* S is specified in relative terms referred to the white noise Sg
by specifing the «corner frequency» f. at which §,= 5,
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Frequency corner
Since P is related to the power of the 1/f noise, as soon as we increase fc we increase the power related
to the 1/f noise.

* The 1/f noise corner frequency f.is defined by

— = S5p hence P =Sif.

NB: the higher is frequency f.
the stronger is the role of 1/f noise
and for a given Sz, the higher is the intensity P

Typical values for low-noise voltage amplifiers :

vV
« Spafewl0BVY/Hz > [5. afew o
5 VHz

* f. 10Hzto 10kHz, thatis
¢« P afewl1l0¥toafew 10 1V 5> VP from a few nV to a few 100 nV

White noise is in the range of nV/sqrt(Hz), so the fc goes typically from 10 Hz to 10 kHz. For standard
applications, this is a big value, so we cannot neglect it.

Sb is the spectral density of the WN, but if we are using the unilateral spectral density for the 1/f noise,
we have to use it also for the WN.

1/f BAND LIMITS AND POWER

The ideal 1/f noise spectrum runs from f = 0 to f = co and has divergent power E 2> ®
(recall that also the ideal white spectrum has né - »)

oo

|
| &

n - df - o

N
b

0
A real 1/f noise spectrum has span limited at both ends and is not divergent.

If there is wide spacing between the high-frequency and low-frequency limitations
they can be approximated by sharp cutoff at low frequency f; and high frequency f, >> f;
and the noise power can be evaluated as *

2
¢ 7 [raern@osenl S

The actual 1/f bandlimits f, and/or f; of given filter types will be illustrated later.

* Beware !
ONLY if f¢>> f; the sharp cutoff gives a GOOD APPROXIMATION of the noise power !

Theoretically, 1/f at 0Hz is infinite, while goes to -inf at infinite frequency, so it is not limited. We need
something that goes to infinite in both the directions. If I apply no filter, the integral of 1/f is hence
infinite.

One of the reasons why we can integrate the 1/f noise and not getting infinite is that we are limited by
the instrumentation, so we cannot read up to an infinite frequency. So we have no problem in managing
the HF, but also the LF is not a problem because 0 frequency would mean that we have to observe our
signal for an infinite amount of time, but this is not actually feasible.
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So if we have both a limitation at LF and HF (fs and fi), and these two limitations are a sharp cut off and
far from each other, we can try to calculate the 1/f noise. Hence I integrate between fs and fi.

Formula x gives us some information. In fact, power of the noise depends on Sb, fc and the In of the ratio
between fs and fi. This is a good thing because WN depends linearly on the frequency Sb*(fs-fi), and the
logarithmic dependance is weaker. Furthermore, the 1/f noise depends on the ration between fs/fi, while
the WN on the difference between, fs and fi.

In cases with widely spaced bandlimits f; >>f; the 1/f noise power n_f is

)
n? ~ ,H = 5o/ m(5)

NOTE THAT:

. n_’f is divergent for f, =2 oo (like white noise).
A limit at high frequency is necessary for avoiding divergence,
but in real cases a finite limit always exists.

. n_f is divergent for f, > 0 (like random-walk noise 1/f2).
A limit at low frequency is necessary for avoiding divergence,
but we will see that in real cases there is always a finite limit

. nT‘f depends on the ratio f,/f; and NOT the absolute values fs and f;

‘We have to select fs and fi.

1/f noise is slowly divergent for fi 20 and fs = inf, because we have the logarithmic of the ratio.

]‘? df = Sefe l“(ﬁ)

Note 1: ?} is SLOWLY divergent for f; 20 or f, 2ee

Logarithmic dependence 2 rTf slowly increases with £,/ f;

e.g : x 10 multiplication of f,/f;, = +2,3 additionto In(f./f;)

EXAMPLE: 1/f noise with VP = /Sy fc = 100nV

>
~4
[
-A

D
a) filtered with f;= 1kHz and .= 10kHz (f./f, = 10) ‘1‘\1\3“ “‘
n2, =23 {Spf, = 1510V

b) filtered with f,= 1 Hzand f,= 10MHz (f,/f, =107, i.e. x 10° higher)

nZ, =723 JSpf, = 4010V (just x 2,7 higher)

The problem is that to decrease the noise we have to make a strong change in the fs/fi ratio, but since the
change in the noise value when fs and fi change is almost the same, even if we change fs and fi we don’t
gain much, we will be always limited by the 1/f noise.
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The good news is that it is not necessary to know the exact value of 1/f noise.

i

n_fz ij; df = Sgf- ln(f—s_)
fi

Note 2 : reasonably approximate bandlimits are adequate for estimating Tf
it is not necessary to know very precisely f, and f; !!

EXAMPLE: for 1/f noise with VP = ./Sgfz = 100nV  we estimate
a) with bandlimits f; = 1kHz and f,= 10kHz

J"}% = \/ﬁ m = 151nV ‘.‘\“\11\&“‘“‘*1

n ~
b) with bandlimit f; corrected to fon = E]‘s = 15,7 kHz (50% higher)

w/’; =42,75/S,f. =166nV  (just 10 % higher )

In the example we are using the equivalent noise BW for the WN, which makes no sense for the fs of 1/f

noise. The error we are making in the 1/f noise is just 10% higher, even if the difference in frequency is
50%.

1/f NOISE FILTERING

7= [ |w<f)|27f =S5 fe [ W(DPaang)
0 —00

Filtering of 1/f noise can be better understood by changing variable from f to Inf
(beware: it’s NOT A BODE diagram: the vertical scale is linear !!)

* 1/f noise: filtered power?]zr « area of |W|2 plot in logarithmic frequency scale

which is different from the case of

* white noise: filtered power né o« area of |W|2 plot in linear frequency scale
In both cases the noise power depends mainly on the frequency span covered by

|[W|?, delimited by upper and lower bounds in frequency. However, the frequency
span is measured differently :

* for white noise, by the difference of the bounds

« for 1/f noise, by the logarithmic difference, i.e. by the ratio of the bounds

Firstly we change the integration variable. Since I'm filtering the noise, the output noise is the integral
from 0 to +inf (unilateral) of the spectral density of the noise Sb*fc/f times the absolute value squared of
the w_f. With 1/f we will always work in the frequency domain, because to solve this integral in the time
domain I would need the autocorrelation of the filter and of the 1/f noise, which is the antifourier
transform of the function 1/f, which is not mathematically possible.

The new integration variable is d(In(f)). 1/f works in the logarithmic scale, while WN in linear scale. The
result is that we can use a graphical approach to compute the noise both for the WN and 1/f noise. With
WN we plot the w_f'in a linear-linear scale and compute the area, while for the 1/f we need a linear-log
scale.
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* The band-limits of a filter for white noise are well visualized in the linear-linear
diagram of the weighting function |W (f)|? :
the simple equivalent weighting function is rectangular with area and height

equal to the true weighting |W (f)|?

* The band-limits of a filter for 1/f noise are well visualized in the linear-log
diagram of the weighting function |W(Inf)|? :
the simple equivalent weighting function is rectangular with area and height

equal to the true weighting |W (Inf)|?

Example: RC integrator

’ 1 lin-lin plot
W =g (2nfRC)? W4

True weighting

Equivalent weighting for 1/f noise

lin-log plot

m |W/2 vs. Log f
—00 €«— f=0 \ True weighting
/ log f

.......... >

fo ! fr = fp Bandlimit for 1/f Noise

For the WN we have to compute the area of the true w_f (black), that is equivalent to the area of the
green rect (that is Sb*fs). For the 1/f we have to plot the w_f of the filter in linear-log scale and then make
the integral.

We get the second plot, with the red one that is the approximation. The value of the integral is infinite.
It is expected because we have just a LP filter, we are not setting a limitation at LF.

Let’s include a limitation also at LF using a HP filter. For the white noise the computation, compared to
the previous one, it is the same, because if fi is much smaller than fs, we are basically integrating the same
area (fs — fi remains almost equal to fs).

As for the 1/f noise, now we have both a cutoff at LF and HF. The area is the one of the blue curve.
Now, if I plot on the same graph two different filters, for the white noise, comparing the area of the square
modulus of the w_{ (| W(f)*2]), the smaller the area the better the filter, and so to compare the filters we
could theoretically compare the areas. The same is valid for the 1/f noise in the linear-log scale, without
making the actual computations.

This is important because we want to compare the filter developed in the next and the CR.
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Lin-Lin plot

G

Wl
/W/2 os !
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0_4_.: AL .fnh _fpz
o | N e
2| | < - 1 (2nf RyC2)?
o S S— < T 14 @ufRC)? 1+ (2nfR,C,)?
T o 0.5 1 1.5 f 2
fnl Efpi Lin-L |
in-Log plot Cascaded two-cell filter:
1 "k';EqUi valent low-pass Tpc =R;C;
o8l +for 1/f naise high-pass Teg= R,C,
IWP? e : :
fri =
RN : Example plotted with
0.2 Tpe=1
o ] Ter= 1000

INTRINSIC HIGH PASS FILTERING VS CORRELATED DOUBLE SAMPLING (CDS)

Every time we make a measurement we will use this filter, but this filter also doubles the noise.

* Inall real cases, even with DC coupled electronics:
weighting is inherently NOT extended down to zero frequency,

because an intrinsic high-pass filtering is present in any real operation.

* The intrinsic filtering action arises because:
a) operation is started at some time before the acquisition of the measure and

b) operation is started from zero value

* EXAMPLE: measurement of amplitude of the output signal of a DC amplifier.
Zero-setting is mandatory: the baseline voltage is preliminarly adjusted to zero,
oritis measured, recorded and then subtracted from the measured signal.

It may be done a long time before the signal measurements (e.g. when

the amplifier is switched on) or repeated before each measurement; it may be
done manually or automated, but it must be done anyway.

Zero-setting produces a high-pass filtering: let us analyze why and how

The real idea is that we don’t make a measurement for an infinite time. For instance, if we have to do a

measurement, we turn it on, we calibrate it and then we perform the measurement. This is what we have
to do to measure the 1/f noise.

The zero setting is mandatory. Every time we make the measurement this is the first thing to do; we can

make a measurement with 1/f noise because someone made the zero setting. Now we have to understand
the zero setting.

From a signal perspective, what is a zero? What is its effect on 1/fand WN?
The effect on the 1/f noise is that we are doubling the noise. How come?
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ZERO SETTING BY CDS

Let’s start with a measurement; a measurement is a S&H at this moment, I'm sampling the signal, so I
have deltas. So at 0 time I have the delta that I use to measure the signal. But before we measure the
signal, somewhere in the past, someone, that produced our system, implemented a measurement of the
zero, which will be subtracted to the measurement I’'m making currently. Since it is a subtraction, it is a
delta with the -1 (x). This is the zero setting.

Baseline sample subtracted from signal sample, both acquired with instant sampling

Wpg

Time-domain weighting

X 5(t)

Y wa(t) = 8(0) = 8(t+71) t
T 0
, o 8(t+T)
Frequency-domain weighting
Wg(w) = Flwg(H)]=1—-e“T =1—coswT —i sinwT
Since: coswT = %(e“*”# e @T) sinwT = i (el@T — g~loT)
For noise [Wg(@)]? = [1—coswT]?+sin?wT =2[1-coswT]
T
We can also write  Z |Wy(w)|? = 4sin? (wT) [since it is (1-cosx) = 2 sin?(x/2) ]
At wT<< 1 a low frequency cutoff is produced
W5 (w)|? = w?T? (for x << 1it is sinx=x and cosx = 1—x%/2)

In the real world, we don’t use delta to acquire signals, are we sure we use it for the offset? We will have
the same problem, because acquiring the signal or the baseline (offset) is exactly the same.

The fact that the noise is doubled for the WN is in the fact that we are acquiring a signal two times, one
for the baseline and one for the actual signal, so we are acquiring the noise twice, because the useful
signal is actually sampled only once in 0.

So we have to express the weighting function, that is a delta at t minus it translated in time (y). Then we
have to shift to the frequency domain, because the goal is to compare this filter with a HP filter to find a
cutoff frequency, and a HP filter is much easier to be treated in the frequency domain.

The Fourier transform of the sum is the sum of the Fourier transform, so we apply the Fourier transform
to the delta adding the exponential that gives the shift in time. Then the exponential is rewritten using
Euler’s expansion.

Then we take the absolute value squared of the w_f. Expression z is useful because we can approximate
it to (WT/2)"2 when wT is really small, with then the factor 4.

Let’s now plot the w_f. We want to compare the w_f of the zero with an HP filter, and understand if the
zero gives us a cutoff at lower frequencies.

At LF, we have the CR and the w_f very similar from the math point of view, even if RC (tau) and T are
two completely different things. Let’s plot the w_f with T = RC.
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Baseline subtraction with delay T High-Pass CR filter (differentiator)
[Wg(w)|* = 4sin? (OJTT) IWer(w)l? = %
at low-frequency w << 1/T at low-frequency w << 1/RC
[Wg(w)|* = 0*T? [Wer(w)|* = w?R*C?
20
W2 | T e e BODE DIAGRAM

10 highlights

|Wg|? the low-freq cutoff

=10

Examples with
equal cutoff T=RC
plotted for T=1

-20

-30

40 SR il
0.1 Logf 1

Blue and green curves are different, they are not the same filter, but we are interested in the LF, 0Hz, and
we notice that the zero setting is equivalent to HP filter. If so, at lower frequency the zero setting is
introducing a cutoff in frequency, that is equivalent to introducing a CR with tau = T.

The problem is that we have to understand if T can be chosen or not, and if yes, which is the value to be
selected.

CDS VS CR HP FILTER — WHITE NOISE

The first comparison is with WN, then we will do 1/f.

To compare two different filters for the WN, we need to plot the w_f in the lin-lin scale. In green we have
the CR, in blue the CDS.

Let’s plot the green times a factor two (red), that is the average value of the sinusoidal waveform that
goes from 0 to 4. I'm interested in the average value because for the WN we want the integral, i.e. the
area, and the integral of a sinusoidal is its mean value multiplied by the sinusoidal between -1 and 1, so
it is the mean value.

The CDS has an area of 2, as for the CR, the area is almost 1, not exactly 1 because I loose something at
OHz. Why if the noise is exactly doubled, here I have almost a factor 2 between the areas of the w_f?
The difference is that we were comparing the sampling without a filtering when saying it is exactly 2,
while here we are comparing the CDS with the CR.
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LIN —LIN DIAGRAM

white noise power « area of |W/2
w2 p W]
3

NB: examples with
equal cutoff T=RC
plotted for T=1

White noise % limited also by a low-pass f, , but with f,>>1/T and f, >> 1/RC

fs
=5 [ WIzas
0
CDS: |W4g/[? oscillates around 2; its area is exactly the same as for a constant [W,/? = 2

CR: [Wg/? has a cutoff at low frequency f < f; =1/4RC; at higher frequency it is [Wg/[? =1

Therefore, for white noise the output power of the CDS is double of the unfiltered noise
and approximately double of the filtered output of the CR (actually even more than double !)

The output power of the CDS is double of the unfiltered noise. If we use the CR we are filtering.

_ fs
n§=saf0 W) 2 df

With Baseline sampling & subtraction With CR high-pass filter
Is J—
2
—_ ns =35 — f.
nf;:SBjZ-[l—cosmT] af 5 = 55(fs = fi)
thatis g and since f, >>f;
2 _ —
=7 Sals 7~ Sofs

Double White noise power, as intuitive because:
1. white noise is acquired twice, in the baseline sampling and in the signal sampling.

2. The two noise samples are uncorrelated, hence their power is quadratically added.

So we are doubling the unfiltered noise and more than doubling with the CR.

T is the delay between when I make the zero and then I perform the measurement. Sometimes T can be
chosen and can be small, because we know when we make the measurement. In other cases we don’t
know when we are making the measurement, so we have to wait and consider the worst case. If T is
huge, the tau of the CR is a very low frequency, so we are picking a lot of 1/f noise.

Time domain: filtering band-limited WN by CDS
In the time domain we have to make the integral of the autocorrelation of the filter times the
autocorrelation of the noise. The last plot is the autocorrelation of a WN limited by a single pole.

We have just to multiply the second plot and the third one. If the noise was really white, so the BW is
much larger than our time scale, the autocorrelation would have been a delta, but I can approximate it
with a triangle with Tn very small with respect to my time scale, and T defines the time scale. So it Tn
<< T, the double exponential goes to much before 0, so we are doubling the noise when we perform the
multiplication.

Instead, if the autocorrelation of the noise is very large (not white), the output noise is due the acquisition

2 times in the middle and then one time per side, but if I enlarge the autocorrelation of the noise, in output
I get 0 because the side sampling becomes close to 2 times the sampling in the origin.
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Wg
CDS weighting function
5(1) ghting
t
8(t+T) l T
kwa
26(7) Autocorrelation of CDS weighting function
T T t
O(t+T) =< : &(t-T)
: AR, :
PR ' Autocorrelation of band-limited white noise
L S —
I . 1“'1:—7—-_,__7__ Ry (1) = nZe T
Ty > ¢ T, noise autocorrelation time

f,=1/4T, noise band-limit

Extreme cases

% - ij (Dkyp(Ddr = zn_zzc = Rex(T) = R (=T)

- xx

T,
* Noise with very short correlation time (i.e. very high band-limit) is doubled:

2

if T «T wehave ng ~ m?

* Noise with long correlation time (i.e. very low band-limit) is strongly attenuated:

. 2 2 2
if 7 >T wehave ny=n,-2—<n;

n
Time-domain analysis clearly shows how with band-limited white noise the
output noise power of CDS is double of that of a CR constant-parameter filter

with equal cutoff, i.e. with T.=RC=T Unfiltered noise

Now I have to do the same thing with the CR.

Filtering band-limited WN by CR
Wf is the delta response of the CR flipped. The delta response of the HP filter is 1 — the delta response of
the LP filter.

The w_f is the sum of two component, an exponential and a delta. So for the autocorrelation ido the

autocorrelation of the delta, of the exponential and the autocorrelation of the cross-product.
The autocorrelation is needed because we are trying to study the 1/f in the time domain for the CDS.
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- Wer CR weighting function
1
5(t) Weg = 8(6) — wp(t) = 6(1) — —exp (— M)
Tr Tr
T W I 1 t
~J F
(1)
kss=0(t)
1 T
- "1113‘{!; kee autocorrelation of wy
- E —_— T
T . — T
N Tr kse + kes crosscorrelations 8wy and wb
Kwwer autocorrelation of the CR weighting function
_‘_ﬁ_“““ﬁ\ = — T kwwer = kss + kgp + kps + kgp
TN 2T,

We have to multiply the two plots in the next image. Our goal is to understand what happens when we
have a noise with a very short correlation time (with noise) or high correlation time (1/f). If t_m is very
small, so ideal white noise because of short correlation time, at the output we have exactly the input. This
has to be compared with the correlated double sampling, where we have a factor 2 with WN.

It t_m is very large, the output noise is the input noise attenuated, that is the same situation of the CDS.

So for both CDS and Cr, when the correlation time is long we are attenuating the noise, but when the
noise has a short correlation time, in one case CDS we have a doubling of the noise, in the other case just
the input noise.

1 1
kywer (1) = 6(7) _EWF(“D =5(1) _z_TFeXD (_IT_IF\)

1— —_ 0
n?} :j. R (T)kwaR(T)dT =
0 xx - 1
~Ra@® -2 R @zwidr =
0 xx

: ik [ e[ (g4
— = =Ny —n o eXp T\ T+ T

Ro(0) = nZe T A AV

i T
% n—z:ﬁ( In ):F Tr
BT Tr + Ty Tr + Ty

* Noise with very short correlation time (i.e. very high band-limit) is practically

passed as it is, not doubled as for CDS: if T, < T, wehave nZx~n2

* Noise with long correlation time (i.e. very low band-limit) is strongly attenuated

at half the level of CDS: if T,>7. we have EzE-T—F«E

n

So it seems that the CR is better than CDS, because we have no doubling of the noise. We still have a
problem, in fact also with a factor 2 I would use a CDS instead of the CR.

With CDS I'm acquiring the signal with a delta, here with a shape that is not a delta, so I'm losing some
frequencies, but the real difference, from theory, is that the CR is a filter we are applying on the chain
after the signal, so directly on the signal and the noise we have to study the effect of the CR. So if the
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signal has some components at LF, with the CR we could damage the signal. The CDS instead is acquired
at the zero of the measurement, so we acquire the baseline and then when we acquire the signal we are
acquiring all the signal, not with also the filter. With CDS we are just choosing the cutting of the 1/f but
not changing the signal.

CDS VS CR HP FILTER: 1/f NOISE

5

! Wy/? LIN —LOG DIAGRAM
5 4 il WA 1 1/f noise power « area of [W/[?
2

2| Wea/ Examples with
® FYZT Y ™ \ T - equal cutoff T=RC
; -\ /:/1 . &[ i plotted for T=1
o -‘;‘-‘2"'-[ \\ J 5 s H

fr  [Wel? fs

o 0.1 1 Log f

1/f noise power E limited also by a low-pass f; , but with f,>> 1/T (f,>> 1/RC)

— fs ng (fs 2 ]
nf=f0 Wl %dﬁssfcfo WP dnf)

At low frequency f<<1/T the [Wg[? and | W[? have the same cutoff (with T=RC).

At higher frequency W is constant W /2 =1 whereas the [W,/? oscillates around
a mean value 2, so that :

fs 2 fs 2
| a1 danpy =2 [ Wl danp
0 0

For the 1/f we have to plot the w_f of the CR and CDS (blue) in a linear log scale. The area of the blue
line and of the green line (and red dotted line) is the amount of noise we are collecting.

Also for the 1/f, the CDS oscillates around a factor 2 and goes between 0 and 4. At first approximation,
also for the 1/f we are doubling the noise. This seems strange because we are using it to remove the 1/f
but in reality we are doubling it. The reality is that without CDS, the 1/f is infinite; then we apply CDS
and we get a 1/f noise that is doubled with respect to the 1/f that we could get with a CR. Again, it would
be better to use the CR because we don’t have the doubling of the noise but the problem is that it applies
also on the signal.

There’s never an optimal solution, we need a tradeoff between not touching the signal and keeping high
noise or viceversa.

Therefore

2 — 2
ng g~ 2N g

the 1/f noise power output of CDS is approximately double (actually even more than
double!) with respect to a CR high-pass with equal cutoff, i.e. with RC=T

For the CR filter it will be shown that the high-pass band-limit for 1/f noise is

1 f:
o~ f = _ 5
fir = I = 7nre and n¢ cx = Spfcln (f_>
if
By comparing the cut-off behavior of CDS and CR, we can conclude that for CDS

1 — fs
A —— d n ~ 28gfcIn|—
fy~opp 2" /B pe fir
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Which is the limit at LF that the CDS sets from the noise point of view? For the CR and 1/f it is the pole
(f_ip), while for the CDS is 1/2*pi*T, where T is the distance. So for the noise computation we need to

set Sb, fs, fc and f_if. For the lower limit f_if we have to set it as in the previous image depending on
having the CR or CDS.

Zero setting by CDS

The doubling of the noise by the CDS is not the only problem, and plus it can be also somehow solved.
The real problem is that we don’t know the time that passes between the turn on of the instrument and
calibration and the measurement. This time is not fixed; to compute the 1/f we have to take the worst
case in terms of elapsed time between the calibration and the measurement. And this is not good, having
a SNR that changes depending on the time instant on which I make the measurement. I want to remove
this dependance.

+ Zero-setting by correlated double sampling (CDS) produces a high-pass filtering action
that limits the power of 1/f noise.

* The interval T between zero setting and measure in most real cases is quite long (from
a few seconds to several minutes) so that the high-pass band-limit fiis quite low. This
is a main drawback: the filtering is not very effective since the 1/f noise power is
limited just to a moderately low level, which may be higher than that of white noise.

* Further drawback: with respect to CR high-pass filter with equal bandlimit f; the
output noise power is approximately double . This occurs because in the baseline
sampling all frequency components are acquired, but in the subtraction only those with
f<<1/T are really effective for reducing the 1/f noise. At higher frequencies
- components with f=(2n+1) /2T (n integer) have power enhanced x 4
- components with f=n 1/T (n integer) are canceled, power is zero

- at the intermediate frequencies the power varies between zero and x 4 (see diagrams)

Summary

for convenience, the diagrams reported in slides are here repeated

2| Wepl% -
SR W A T W LIN —LIN DIAGRAM
white noise power « area of |W/?

AR

5
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[w|?

© I WCR | 2
-1 i i i i
oe N i NB: examples with
equal cutoff T=RC
5 W, 2 plotted for T=1
B
°2|Wel?

LIN —-LOG DIAGRAM

VA 1/f noise power o area of [W/[?
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1
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CDS WITH FILTERED BASELINE - CDS-FB

Do we really need a delta to acquire the baseline? The baseline is the offset, which ideally has a very LF.
And we are acquiring something with a very LF with a delta, so acquiring a huge amount of noise to
acquire something that is at LF. The ideal filter would be a LP filter - better to use a delta to acquire the
signal and a rect to acquire the baseline. But the rect is GI, so as soon we increase the width of it in time
domain, in frequency domain we are decreasing the BW and acquiring less noise.

The drawback is, from a practical point of view is that we need some time to acquire less noise (if we
increase the width of the rect to reduce the noise).

So instead of using a delta for the baseline and a delta for the signal.

Baseline sampling is intended to acquire the contributions of the low-frequency
components that we want subtract from the measurement.

However, instant sampling acquires all frequency components at low and high
frequency; by subtracting them all, we double the noise passed above the CDS cutoff.

Remedy: modify baseline sampling for acquiring only the low-frequency components;
that is, sample with a low-pass weighting function wg(t) with band-limit fg,, which
includes only the frequencies to be subtracted.

Example: noise with upper bandlimit f; and baseline acquired by a Gated Integrator with
narrower filtering band f;,<<fs (recall fz,, = 1/2Tg with gate duration T;)

(6) = rect(— £ 1) e
Wg =rect(——,—
272
wg () =6(t) —we(t+T
T, T, s pi1(t) = 6(6) — wg( )
1 —T— 1
T_F T:Tp+% io t
%l

NB: we still consider cases with long interval T, >>T, from zero-setting to measurement

Now we have to write the equations.

Wgi (@) = Flwg(t)] = F[5(t) —we(t + T)] = 1 = e“TW(w)

since Wi (w) = sinc (w:F) is real at any w , we have
Wg(w) =1—Wg(w)cosw T — iWg(w)sinwT

[Wgi ()] = 1+ WA (w) — 2Wp(w) coswT

At low frequency (f<< 1/T)itis Wr(f) = 1 and Wy, has a high-pass cutoff
equivalent to a CR differentiator with RC=T

Te\?
2 . 2m2 _ 2 IF ~ - =
Wp(w)|* = 0°T* = w (Tp + 2) Ty = 27 2n (1, +£) cutoff frequency

At high frequency above the Gl low-pass cutoff (f>> f,=1/2T;)itis [We(f)| = 0
so that [Wg, ()% = 1

In the intermediate range (1/T<< f<< 1/2T¢) itis roughly W:(f) = 1 so that roughly it is
|Wg ()% = 2(1 — cos2rfT). In this range the average value is about |Wy,(f)|* = 2,
hence we can denote it as double-noise range
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The w_f'is the delta minus the w_f of a rect shifted. So the Fourier of the w_f is the Fourier of the delta
minus the Fourier of the rect. The former is 1, the second is the one of the rect times the phase shift (we
are shifting it in the time domain.

Since we made a change, we need to check the data, and our data is to find a cutoff at LF. We need to
check if we have a cutoff at LF, because we removed the doubling of the noise but maybe also the LF
cutoff.

The w_f when omega is really small (f << 1/T), the w_f of the rect is 1, so we have a high cutoff as in the
normal CDS. If f > 1/T, the final w_fis 1.

So we here have a cutoff at very low frequencies, but in the CDS is a sinusoidal oscillation between 0 and
4 till to infinite, while here the w_f goes as the CR at HF.

In the middle we still have a doubling of the noise.

approximation

Iwy? [EEm= T i -
CDS-FB - : : BB nj "~ for the double-noise

frequency range

approximation

DR s LAl
. B o — e e ] e | i :
L CR high-pass 1 . : & -‘ T | for the high
filter, . : _ j ; frequency range
1—> P i R
1 Tk

| .

|
T U L '

) _ | 55 |
00001 ncﬁ 0‘1 f
fif an s
CDS-FB Gl Noise
high-pass low-pass band-limit

cut-off band-limit
Example of CDS-FB with Tp= 101 and Tp=2
for comparison, a CR filter with equal cutoff RC=T = T,+T,is reported

At very LF we have the same behavoiur of the CDS that was the same behaviour of the CR. At very HF,
it goes to 1, that is exactly the value of the CR. In the middle we have the sinusoidal with a factor 2.

We are focused on LF, but we should also consider the fs, HF cutoff, that is e.g. the frequency of the
amplifier or of the filter to filter the signal, but now it’s far at HF.

We have to extend the behaviour of the CDS-FB till fs (blue dashed). So I notice HP filter, doubling, one.
So the blue curve is 1 after a certain point, in the CDS it has a factor 2 up to fs.

So we have a doubling of the noise in the red rect, that in the normal CDS is large as fs. We need to
define some frequencies; the first one is the lower cutoff, and f_if'is the frequency of the intrinsic HP filter.
Then the second frequency is fs, which is the higher limit for the noise. Then f_Fn is the BW of the filter
we introduced for the baseline (the rect for the baseline), so f_Fn is the BW of the GI.

I should make the integral of a factor 2 from f _if to f Fn and of a factor 1 from f Fn to fs. But instead of

doing this, I do the integral from f_if to fs of the factor 1 and then in the previous interval I do the integral
of a factor 1. This is for the computation of the output noise power.
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Output nose power

— fs fs ]
nZ = j (A Wi ()] df = f S(OIL+ W — 2W, cos 2nfT]df
0 0

By approximating Wy, as outlined, the noise power can be approximately evaluated

— fs : fr
1/f noise nj%’ g1 = Spfcln (E) + Sgfcln (T;)
white noise ng g =~ Sp(fs — fi) + Sp(fen — f1) = Spfs + Spfen

In CDS-FB the noise-doubling effect is strongly reduced with respect to the simple
CDS: it occurs only in the range from the low-frequency cutoff to the Gl filtering band-
limit.

In cases where the Gl band-limit is much smaller than the noise band-limit (fs>> f, )
the effect of noise doubling is practically negligible

Js

2 ~ 2
ng gy NSch]“(f ) ”123,31 ~ Sgfs
if

If we had two deltas, in CDS the f Fn would be infinite, but if so we are limited by fs, so we return to the
normal CDS, both for the 1/f and WN we get again the factor 2.

What is the real value of fs?

There is only one limitation, that fs has to be much larger than f_if, otherwise we cannot use the formula.
So fs is any cutoff at HF, so we can imagine it as the cutoff of the filter to filter the signal, e.g. a GI.

The doubling is avoided when fs >> f Fn, which means that we can neglect the red term, i.e. in the time
domain I'm integrating for a large time, using a large rect so that f Fn small. In this way we get the 1/f
and WN without doubling.

This is why instruments take seconds to make the zero baseline.

This result is just the starting point, because we still have the 1/f noise, ok it is not infinite with the LF
cutoff, but not leading to an optimal SNR. The problem is that f_i si dominated by the distance between
the baseline setting and the measurement, and it can be very large, so I’'m integrating a lot of 1/f noise.

To avoid this problem we could reduce Sb, but this cannot be done. Again, fc cannot be changed as soon
as the fix the preamplifier. As for fs, it is the higher cutoff of the filter we will use, and with the optimum
filter theory, the filter has to be the same shape of the signal, so the fs is the cutoff of the signal, so it is a
data and we cannot change it. The only parameter we can change is f_i, but it has the problem that is
very large.
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CORRELATED DOUBLE FILTERING - CDF

The WN and 1/f are described by a formula that has a limit at LF due to CDS and a limit at HF due to
the filter that we are using. So to set the higher limitation we can use any type of filter instead of using a
delta to acquire the signal. So we can study a particular case to make the zero as soon as we can.

* Invarious cases of pulse-amplitude measurements, filtering by gated
integrator (Gl) is quite efficient for the white noise component, but not for
the 1/f component.

* Animprovement is obtained by subtracting from the Gl acquisition of the
pulse another Gl acquistion over an equal interval before the pulse (or
after it, anyway outside the pulse)

* This approach has the same conceptual foundation as CDS, but has the
two samples filtered by the Gl: it is therefore called «Correlated Double
Filtering» CDF

* The approach can be extended to cases where a constant-parameter low-
pass filter LPF is employed for filtering the white noise component and a
1/f component is also present

* Insuch cases, the measure can be obtained as a difference of two samples

of the LPF output: a sample taken at the pulse peak and a sample taken
before the pulse (or after it, anyhow outside the pulse)

If we have the sync and know where the signal is, we can think of making the zero and making the
measurement of the signal then. So we would like to use a rect also for the signal, not only for the baseline.
If we use this approximation, we get exactly the same formula as before. In this case fs = f Fn because
the rects have the same width, so we are doubling the noise because we are using the same signal for the
filter and for the noise.

The difference is in the fact that the BW I have to use in the rect for the baseline should be much smaller
than the one I use for the rect of the signal. In this way I can avoid the doubling of the noise. If we use
the same BW of course we are doubling the noise. We study a particular case where T, the distance
between the two rect, that is really small. This is a case not included in the previous calculations, because
one of the hypothesis of the previous calculations was that fs is much larger than fi.

1 wpp(@) = we(a) —wg(a —T)
TF\L CDF weighting (NB: T2>T,)
a 1] T; 0
TF TF T
wpsl(a) = 6(a) — 8(a —T)
6(c) CDS weighting
a - 6(a-T)
1 we(a) = rectyr, ()
TF\L LPF weighting
o Te

CDF weighting = convolution of CDS weighting with LPF weighting
wpr(a) = wpgs(a) * wp(a)
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The w_f in the time domain is the convolution of the w_f of the CDS times the w_f of the LP filter, and
in this case the LP filter is a gated integrator. If we put all together the convolution in the time domain is
the product in the frequency domain, but we are interested in the squared product of the absolute values.

Since in time domain wpp(@) = wpg(a) * wg(a)

in frequency domain it is Wpr(w) = Wps(w) - Wr(w)

for noise computation [Wprl? = [Wps|? - |We|?
and since [Wpsl? = 2(1 — coswT) = 4sin?(wT/2)
we have

T .
Wprl2 = 2(1 — cos@T) - [Wr|? = 4 sin? (“’T) A

The main features of CDS reflect the fact that it is a combination of CDS and LPF :
1. The LPF cuts the noise at high frequencies with its LPF band-limit f,
2. The CDS cuts the noise at low frequencies with its HPF band-limit f, = 1/2nT

3. The CDS enhances the noise in the passband between the band-limits (with
enhancement factor roughly 2)

For sure we will have a lower cutoff due to CDS and a higher cutoff due to LP filter action, but the cutoff
of fs and of the LP filter that we used with the baseline is the same, because we are using the same rect
for the signal and the baseline.

The problem is that not only we collapse the two cutoffs of fs and fn, but we also collapse fs to a value
that is really similar to the value of the lower cutoff. At this point we have no more the LF cutoff and the
HF cutoff well spaced so we can use the normal formula.

If we put all together (image below), the Fourier of the rect is the sinc and we get the function in the box
of the next image.

wr(a) = rectyr,(a)

1
Tpl LPF weighting

a Tr

T, wlp\ _i,TE
wr(a) = rectyr (@) = rect_rprp(a 77F) (:) Wp(w) = Sinb( ZF) Pl
272

but the module does not depend on the phase factor (i.e. on the time shift)

i (O

[We ()] = |smc(“’TTF) = smm FZ )

e
Therefore
; ; T, ; T T,
[Wprl? = 2(1 —coswT) - |Wel? = 2(1 = cosw T) - Sinc? (%) = 4sin? (MT) - Sinc? (%)
sin? (—wgp) sin* (—MZTF)

thatis Wprl? = 2(1—coswT) - =4

e IC )

The shape has a cutoff at LF, like the HP filter, but instead of a part that doubles and another that has
gain 1, it dies. The problem is that we don’t have a distance between lower cutoff and higher cutoft and
so we cannot use the previous formula.

So we can do two things; either we plot with MATLAB the w_f and we compute the noise (area of the
function) or, since I have to use the filter just one time, I do an approximation, because the use of two
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rects very close one to the other (0 distance, at the end of on rect it starts the other one) is something we
will use several time. And if we reduce the distance between the baseline and the signal we are reducing
the T and we are increasing the cutoff for the 1/f. So the higher limit at LF for the 1/fis when signal and
baseline are at zero distance (T = Tf, the distance is equal to the width of the rect).

Computed for the case of time shift T = T integration time= 1

dB o

20+
.25
30

-85

Log f

In this situation the shape is the one above. I notice that there is one big lobe and several small ones,
whose area is probably negligible. So the ide is to approximate the main lobe with a rect.
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MEASURING PULSE SIGNALS WITH 1/f NOISE

At this moment we didn’t solve the issue of the 1/f, we understood that we can make the measurement
with 1/f without doubling the noise and without having a SNR = 0.

The optimum filter theory doesn’t work because the noise is not white. The problem is that it is impossible
to create a whitening filter for the 1/f noise > we cannot use the optimum filter theory. In principle we
cannot manage this situation.

But we can solve with the idea that the 1/f noise is logarithmic with the BW and connected to the ratio
between HF and LF, while the white noise is connected with the difference of HF and LF.

Case: amplitude measurement of pulse signals with 1/f and wideband noise.

The classic approach to optimum filtering (to find first a noise-whitening
filter and then a matched filter) is arduous in this case because 1/f noise

» sets a remarkably difficult mathematical problem

* makes the whitening filter difficult to design, not implementable with lumped circuit
components, but with distributed parameters (distributed RC delay lines, etc.)

However, by noting that
a) for 1/f noise the filtered power

* mainly depends on the span of the band-pass measured by the bandlimit ratio,
hence it is markedly sensitive to the lower bandlimit level

« weakly depends on the shape of the filter weighting function
b) for wideband noise the S/N

* depends on the span of the band-pass measured by the bandlimit difference,
hence it is weakly sensitive to the lower bandlimit level

* markedly depends on the shape of the weighting function

an alternative approach leading to quasi-optimum filtering can be devised

The first step is to completely remove the 1/f. Then we compute the whitening filter (e.g. if we have
1/f*2) and the optimum filter and so on. If we are lucky, this is enough.

FIRST STEP:

* Design a main filter for signal and wideband noise only (that is, considering non-
existent the 1/f noise) and then

* Take then into account the 1/f component and evaluate the additional noise power
that 1/f noise brings to the main filter output.

In the (lucky) cases where this 1/f noise power is smaller than the wide-band noise (or at
least comparable), the main filter may be considered sufficient without further filtering.

Otherwise, if the addition due to 1/f noise is excessive, proceed to the

SECOND STEP :

+ design an additional filter for limiting the 1/f noise power without worsening
excessively the filtering of the wideband noise.

It is obviously a high-pass filter, which must combine the goal of
a) reducing efficiently the 1/f noise power

with the further requirements of
b) limiting to tolerable level the increase of the filtered wide-band noise
¢) limiting to tolerable level the reduction of the output signal amplitude

As a second step we try to compute the effect of the 1/f on the filter we chose without considering the
1/fnoise. If it is negligible compared to WN we are finished.
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If not, we try to add an additional filter to try to reduce the effect of 1/f. Obviously, the additional filter
will be a HP filter, because the LP filter is for the signal, but how can I choose it?

First of all, the additional HP filter has to efficiently reduce the 1/f noise and we don’t want to damage

the signal, because if we apply this signal after the matched filter we are applying it to both the signal and
the noise.

The problem is that we apply the filter to both the signal and the noise, so we want to cut the 1/f noise
but also have a small impact on the signal. Furthermore, adding a filter to remove the 1/f could have an
effect on the signal (CDS theory) cutting a part of it, but also eventually enhancing the white noise.

FIRST STEP

We are neglecting the 1/f noise, so we can find the optimum filter since we have just WNN, so the optimum
filter is the matched filter low pass filter. As an approximation, we suppose that the LP filter in the
frequency domain can be approximated with a rect and we are interested in the value in 0 in the time
domain of the signal, because it is a very low frequency signal.

The value in 0 of the signal is the integral of the Fourier transform in the frequency domain, which is the
amplitude times the BW of the filter, because we approximated the matched filter with a rect in the
frequency domain.

The issue is better clarified by considering as FIRST STEP the optimum filter for signal and
wide-band noise (or its approximation) composed by
* Noise-whitening filter, with output white noise 5 and pulse signal.
Let f¢ be the upper band-limit and A the center-band amplitude of the pulse transform.
* Matched filter, which has weighting function matched to the pulse signal from the
whitening filter and is therefore a low-pass filter with upper bandlimit fs.
The output has a signal with amplitude roughly V= A f; and band-limited white noise
with band-limit f;and power

”123 ~ Spfs

For focusing the ideas, let’s consider a well known specific case: filtering of pulse-signals
from a high impedance sensor with an approximately optimum filter, i.e. with matched
filter approximated by a constant-parameter RC integrator.

In this case, the output noise corresponding to the input wide-band noise is a white noise
spectrum with band-limit set by a pole with time constant RC=T,,

Now we have the WN as Sb*fs, and the BW limitation for the noise is the same for the signal because
we are using the matched filter.

Then we have to introduce the 1/f noise to understand if we are lucky or not. Since we are using a
matched filter with the same BW of the signal, it is not strange that both signal and WN have the same
BW.
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SECOND STEP
We are introducing the 1/f noise to see if its effect is negligible compared to the WN.

Let’s now take into account also a 1/f noise source, which brings at the whitening filter
output a significant 1/f spectral density Sg f /f .

At high frequency, the 1/f component is limited by the upper bandlimit f; of the
matched filter.

At low frequency, the 1/f component can be limited by a lower band-limit f; set by

an additional constant-parameter filter. With f; << f¢ the output power of the 1/f
noise can be evaluated as

2 fS
ng, = Spfc In (7)
i
However, the constant-parameter high-pass filter operates also on the signal: it
attenuates the low frequency components and thus causes a loss in pulse amplitude,
hence a loss in S/N. The reduced amplitude is roughly evaluated as

Vs = A(fs = fi) = Afs (1_)%)

For limiting the signal loss, f;/fs must be limited; e.g. for keeping loss < 5% it must be

fi that is fs
E < 0,05 In (_l) >3
The effect of 1/f noise is Sb*fc*In(fs/fi), if fs >> f Fn. Sb, fc and fs are data, fi has to be chosen.

So in theory I have just to choose the correct value for fi. The problem is that if fs = fi we are loosing part
of (all) the signal, so the signal is 0. The signal is A(fs-fi) because we are cutting the low frequencies, that
is the original signal A*fs minus a factor.

If we want to loose e.g. only 5% of the signal, f1/fs < 0.05, so In(fs/fi) > 3.

The goal is to have 1/f noise much smaller than the WN.

For reducing the 1/f noise to the white noise level or lower

Sgfe In (%) < Sgfs

We need that

fs
fe = —77
In (E)
fi
and since for keeping the signal loss <5% it must be In (E) >3
we need to have i
fs
fe < 3

This means that the goal can be achieved only if the 1/f noise component is low or
moderate. Note that fo and fs are data of the problem, they cannot be changed. In
cases where f exceeds the above limit, a constant-parameter high-pass filter is NOT
a suitable solution for reducing the 1/f noise power.

CONCLUSION: constant-parameter high-pass filters can be useful as additional filter
for limiting the 1/f noise, but just in cases with moderate 1/f noise intensity, because
of their detrimental effect on the signal pulse amplitude.

In order to have a 1/f noise negligible compared to the WN we need a fc that is fc < fs/3. At this point
we don’t have any other parameter to choose if the text gives us this condition satisfied. If not, the 1/fis
dominant.

If so, we need to add another filter.
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BASIC CONSTANT PARAMETER HP FILTER (CR DIFFERENTIATOR)

IS 5(t)
[T = v(t) W= 8 L 1 —Tt—f
- 5-response =251 - 10 Ty ¢
x(t) R 1 t
f ¥ t
= _ = - u@® =1 e 1
Tr=RC F Step-response =10
fo= — 1
p ZTTTf >t
Transfer function 4
. [H(f)[?
j2rfTy
HU) = gl memsssmssscreresosbeooooosoo
J2nfTy
5 1 N | fe---- -
z 1
2rfT, 1

P
1+ (2nfTy) ;
3 dB frequency (Pole) fpﬁ: 1/2nTy

Firstly, let’s study the basic CPF that the HP filter is. We have one zero in the origin and one pole.

The bottom right plot is the w_f in the lin-lin plot. The delta response is the derivative of the step
response.

We can write the HP filter like the all pass filter minus the law pass filter, always. This can be
demonstrated with the formulas in time frequency domain or time domain. The all pass is 1.

The intuitive view

«High-Pass Filter = All-Pass - Low-Pass Filter»

is confirmed by \ / /
1

j Zﬂfo
Transfer function H(f)=1 —

1+ 2nfT, 1+ 2nfT;

Ll [

t

1 ——=
&-response h(t) = 8(t) — 1(t) T e If

Ll

w(@) = 8(a) — 1(a) 1.7
Ty

< 1
a —
\ Ty

- Y

Weighting function
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From the Kirchhoff standpoint:

The circuit mesh structure itself confirms that

«High-Pass Filter = All-Pass - Low-Pass Filter»

< Ve
[ ] V; =input voltage
¢ V= low-pass filtered V;
. Vg = high-pass filtered V;
V. C) . A s = high-pass filtered V/;
Kirchoff’s mesh voltage law
V[‘ = VC + VR
Therefore Ve =V,=V,
that is

High-pass filtered Vj = resistor voltage =
= input voltage V,— capacitor voltage =
= input voltage V; — Low-pass filtered V;

Seeing the HP filter as the difference of the all pass and LP filter saves time in the computations. We
want to compute the ENBW for the HP filter.

If I have WN and HP filter and I want to compute the power of the noise as if it was a rect, the ENBW
is pi/2 * fp, because if all pass is constant and the LP is a rect at a frequency fp, then the HP is the

equivalent rect.

High-pass band-limit for White noise
Premise: with only a high-pass CR filter the white noise power % is divergent,
therefore we consider here also a low-pass filter with band-limit f,>> 1/RC.

The high-pass band-limit f; of the CR filter with weighting function W(f) is defined by

st (ff_p)z

- fs e -
né*SBJD W ()| 2df ngo 1+%)z

The computation of the integral can be avoided by recalling that
CR high pass filter = all-pass — RC low-pass filter
and therefore
high-pass band-limit f; of the CR filter = low-pass band-limit f}, of the RC filter

1
fick = fn re =IRC

df =Sp(fs = fi)

We wat to rewrite the integral x as Sb(fs — fi) and compute fi to write the noise as a rect. For the WN the
limits for HP and LP are both 1/(4RC), and we want to find them writing the noise of the 1/f as a rect
also for the 1/f noise.
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High-pass band-limit for 1/f noise

Premise: with only a high-pass CR filter the 1/f noise power n_)% is divergent,
therefore we consider here also a low-pass filter with a high band-limit f, >> 1/RC.
The high-pass band-limit f;; of the CR filter is defined by

— =3Ssfc| —=SpfIn()
1+(%)2 f i S fis

P

-\ 2
= Sfe fﬂfs (/‘L) ar . (7sdf fs

In this case the first integral is fairly easily computed and shows that

i ==

£y 2
bt (/;)
that is, forf5>>fp

1
fir = I = 32re

The idea is that if we use a HP filter, let’s compute the 1/f noise n_f"2 and we want to approximate the

computation as a rect, as an integral from f_if and fs. This equation is true only if we have a sharp cutoff
(rect).

I want the f_if value that allows me to write it as a sharp rect with sharp cutoffs. So with f_if I have to
choose the exact frequency of the pole if fs >> fp.

Extended calculations

B

3 fs_\fp d
n)% = Spfc fo S% o Sefe %f i(—%)df
“(E)
r\? f
Considering g(fy=1+ (_) and g'(f)= 2=
Ip fp

We can solve the intregral by substitution obtaing:

And then make it equal to the final form:

— 1 IAY AN .
ng = Spfes In (1 +(E) ):Schln (H(f_p) )zSchln(fTi)

The important thing is that when computing the noise power for the 1/f, f i I have to choose the
frequency of the pole for the HP filter case.

So if I have to choose the frequency of the pole, so 1/(2*pi*RC) for the HP filter in the formula of the In
compute the 1/f, if I have the CDS, which is the value to put in the formula?
1/(2*pi*T), because at lower cutoff the CDS is equal to a CR with T = RC.
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SUMMARY

* The upper frequency limit f :
- is necessary for limiting the white noise power
- is useful also for limiting the 1/f noise power

- the level of fs is dictated by the pulse signal to be measured

* The lower frequency limit f;:
- is necessary for limiting the 1/f noise power,
- the selected level of f; is conditioned by the pulse signal, it cannot be arbitrary
- however, the reduction of 1/f noise is significant even with fairly low f;, that is,

with f. /f; values that are high, but anyway finite.

The important thing is that the level of fs is dictated by the pulse signal to be measured; we cannot choose
fs because fs is connected to the signal and we want to collected the signal and limit the amount of noise.
As for fi it is necessary only to limit 1/f, normally it has no effect for WN.

If we area applying a filter at the end of the chain that acts both on the signal and the noise, the higher
the frequency of the HP filter, the lower the 1/fbut also the lower is the value of the signal.

However, 1/fis cut significantly even with low fi. Changing fs has not a really big effect, but changing fi
has, because in principle 1/f starts from 0, so if instead of 0 we are taking a very close value for fi we are
limiting the 1/fa lot. From 1.001 to 1.1 Hz we change a lot the 1/f noise, even if we are still at 1 Hz.
For the WN this is not an issue.

But we cannot simply use a HP filter to cut the 1/f, only if we are lucky that frequency corner is small
and we don’t want to loose a lot of signal. But there is another problem with the HP filter.

If the signal is a pulse, sometimes also if fs is lower than fs/3, we have problems because in the real world
we never have just one pulse, but a sequence of them. Normally we are happy to have a sequence of
pulses, because if they have the same amplitude (or similar), we can filter different pulses to increase the
SNR. So if we can repeat the measurement we are happy.

The point is that if we have a sequence of pulse with a CP filter (CR filter), something happens.

CR FILTER AND PULSE SEQUENCE

So we have our pulse, and for the problem of the 1/f we need to use a HP filter. If we pass a rect in the
HP filter, if RC is much larger than Tp we get x. Normally we neglect the tail if the tau is very large, and
the rect at the output is the same of the rect at the input, so we neglect the tail.

In general, in the time domain the response of a filter is the convolution between the delta response of
the filter and the signal, that in the frequency domain translates into the product of the Fourier of the
filter times the Fourier of the signal. As for the Fourier of the HP filter, it is the HP filter; the value in 0
of the Fourier transform of the CR HP filter is 0.

When we multiply the Fourier transform of the filter and the one of the signal, if the Fourier of the filter
has 0 in the origin, the result has to have a zero in the frequency domain. But zero in the frequency
domain is the area in the time domain.
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So every time we apply a signal to a HP filter, the output has to have zero area, because in the frequency
domain we have a zero. So the area of the tail is exactly equal to the area of the rect. If we increase the
tau, the difference between the beginning and the end of the rect is really small, but at the same time the
length of the tail is very long (right plot).

Let’s look in detail the effect of a high-pass filter (RC = T ) on a pulse signal

View on SHORT TIME scale View on LONG TIME scale
pulse area ==
A=V,T,
Vo = A
P = Tp INPUT
TP
> S .
e
Vp = 4 OUTPUT A 7TL
P, X Long tail T—Fe g
Ty = RC R /
A—Q—-__—__’ i_@__/‘z—* —> t
A T,

Tr

NB: DC transfer of CRis zero = net area of the output signal is zero

One of the problems of the CR is that there is a tail when we have a very long tau, but at the output of
the filter the area must be 0 because it is a HP filter. The ling tail compensate exactly the area of the
positive part of the previous image, and it lasts for a long time. The problem is not if we use a single pulse,
but if we have a sequence of pulses

CR FILTER AND SEQUENCE OF PULSES
The first pulse creates the tail, and the second pulse starts from the tail of the first one, not from 0, and
has a tail itself that sums to the previous one.

B '_'_J’_'. A
A pulse that follows a previous one within a fairly
short time interval (T, < 5 T¢) steps on the slow
tail of the first pulse. Therefore, it starts from a
Vp Vp —4 down-shifted baseline, so that the amplitude
measured for it is smaller than the true one.
— ¢
af
1 1
! T, For periodic pulses with fairly short repetition period T << T¢, the
superposition of slow pulse-tails shifts down the baseline by a Ve
that makes zero the net area of the output signal
INPUT
Ve - OUTPUT
Tp v
ol
i n-t ! t ] $ Vs [t

T, .
Repetition-rate-dependent baseline-shift Vs = VPT_: =4/

If the input is a square waveform the sum of the tail is so important that we have a shift of the waveform,
and this is correct because the positive part has to be equal to the positive one. For a periodic signal is not
so bad to have a shift because the area has to be 0 at the output, because I can compute the shift, it is
deterministic.
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The high-pass filtering (differentiator action) of the CR filter has MIXED effects.

The effect on noise is ADVANTAGEOUS: by cutting off the the low frequencies it
markedly decreases the 1/f noise power (and mildly reduces the white noise power)

The effect on the signal is DISADVANTAGEOUS:

it decreases the signal amplitude by cutting off the low frequencies of the signal ,
hence f; must be kept low (f; << f5 of the pulse) in order to limit the signal loss.
However, this limits also the reduction of 1/f noise

it generates slow tails after the pulses, which shift down the baseline and thus cause
an error in the measured amplitude of a following pulse

With a periodic sequence of equal pulses, all pulses find the same baseline shift. The
amplitude error is constant, sistematically dependent on the repetition rate.

With random-repetition pulses (e.g. pulses from ionizing radiation detectors) the
pulses occur randomly in time. Hence the random superposition of tails produces a
randomly fluctuating baseline shift. The resulting amplitude error is random:

in this case the effect is equivalent to that of an additional noise source.

CONCLUSION: a differentiator action is desirable on noise, but NOT on the signal.

WANTED: not a constant-parameter differentiator, but a true Base-Line Restorer (BLR)

The problem is that if the signal is not periodic but stochastic, we don’t know when the second pulse will
come, so I don’t know delta and the real amplitude I'm measuring, I'm making an error of a quantity

delta.

Hence the CR is good because it is cheap, and compared to CDS we don’t have doubling of the noise.
But if we use a CR we act both on the noise and the signal, so we remove part of the signal. Moreover, it
creates tails and the tails are tolerable with periodic signals but not with stochastic signals, with the latter
we cannot make measurements.

So the CR works perfectly for the noise but not for the signal, so the idea is to introduce a baseline restorer,

a NCP filter that

is a CR only for the noise.

BASELINE RESTORER
We start from a CR and we add a switch. Every time we add a switch we need to define where to put it
and how it works. Since we would like to have a CR only on the noise, we have to close the switch when
there is no signal, so that we have a CR.

High-pass filtering action on the noise and NOT on the signal: switched-parameter

CR filter with CR = o= when signal is present, finite CR = T when no pulse is present
Ve
S-down -
— / -
| | . S-up S-down
| | A o
(O
_ x(t) =V, i
ﬁ) R VR_ V,- - VC ' TP:p:ufse peakihg time
S j ‘ t
r w
WB(a) = 6(’1) - WF(“ - TP) 6(0’.)
o i X
_a-Tp a=0 :
we(a —Tp) = La—Tp) —e 7
Ty
y(t) = Vg =V;- V¢
As S is open at the pulse onset (at a=T, ),
charging of C stops and voltage V, stays constant at the stored value t
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The weighting function of the CR with the switch is x. When the switch is open, if I apply a delta to
create the w_f, the effect of the delta on t_m is 0, but there is one time where there is an effect, that is
exactly at t_m, this is the reason why there is a delta in the w_f for t_m, that is a value I choose (typically
in correspondence of the maximum).

The w_f in the blue box is a delta minus the w_f of a LP filter, which is exactly the idea of the HP filter
(1 — LP). The difference is that we include the shift, because the switch gives us the possibility to shift
where to take the 1 and the LP filter.

CR FILTER AND BLR COMPARISON

CONSTANT-PARAMETER FILTER SWITCHED-PARAMETER FILTER
CR constant at all times with S-up R=> == and CR = =
— — S-up

S-down S-down
— —

5(a) ot

a=0

So the CR works also on the signal, but the BLR has the same w_f of the CR but the negative LP filter
and the delta are shifted, so the signal is exactly the same.

Now we increase the complexity of the filter because the real problems of the CR were that it acted on
the signal, damaging it (remover with the BLR), but it had also a problem with periodic pulses. Can |
solve this issue also with the BLR?

Instead of opening the switch one time, I open it every time I have the signal. If the tau of the LP filter
finishes between two different pulses I'm applying the same filter multiple times. The good thing is that
as soon as I open the switch when I have the signal I'm not necessarily forced to have a CR that finishes
between two pulses, because I can have a CR also with a long tau because the tau ‘doesn’t touch’ the
signal.

S-up

S-up -up
S-down Ml S-down m S-down
I T L A

BLR
C
_
Y i 0 t
vt LE i A /\
[ I » = e t
s wg(a) BLR welghting }Ié(a)
a \—l—i

S
1

Vo= V- Ve ‘
o ——— ]
BOXCAR b b

s R' We(a-Tp) Boxv:car: weighting - i
_—— l R r T
iv” T I s 1 5 A B |
a l
Tp

BLR weighting = (All-Pass — Low-pass Boxcar) weighting

\

wg(a) = 6(a) —wp(a —Tp)
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Since the HP filter can be written as 1 — LP and 1 in the time domain is a delta minus a boxcar shifted,
in the end we get the reverse of the boxcar integrator.

BLR weighting in frequency

ido‘”” / S-up S-down  BLR principle is alike filtered zero-setting,
i but with a basic advantage:
a much shorter T,

‘ much higher band-limit f; (high-pass)
X(t
() T (the BLR switch is electronically controlled,
SR

the interval T, can be very short)

5(a) BLR weighting = All Pass — Low-pass

a\\l a=0 wi(@) = 6(a) —wg(a —Tp)

Low-pass weighting in frequency:
We(w) = Flwp(@)] = Rp(w)+ilp(w)
BLR weighting in frequency:

Wg(w) =1 —"e/*TPWe(w) =1 —[cosw Tp — jsinwTp] - [Re + jl¢] =
=[1—-RpcoswTp—IpsinwTp| — j[lpcoswTp — Rpsinw Tp|

Having more than one parameter allows us to choose the tau of the filter and where to close the switch.
I want to get how to set the parameters.

So the w_f'is a delta (1) minus the w_f of a LP filter. The problem is that we are using a generic w_f for
the LP filter, which I don’t know if it is real or a complex function. So I have to add also the complex
part to take into consideration all the possible cases.

The steps are the same of the CDS, and we are splitting the real part and complex part, because we want
the absolute value squared of the w_f. Let’s carry on the calculations.

BLR weighting for noise:

(W ()]

=[1=RpcoswTp —Ip sinwTp)? + [Ipcosw Tp — Rpsinw Tp)? =
=1+R;+1}—2RpcoswTp — 2Ipsinw Tp =

=1+ |Wp|? = 2Rpcosw Tp — 2Ipsinw Tp

Let’s consider just cases where the interval between pulses is much longer than T,

so that «

1 &
wr(a) = 1(a) T, ¢ Trooand  Wi(w) =T+jal,

and therefore

[We(w)|? =1+

coswTp + 2wTk -
T2 i Fltoe

1+w2T,§721+w ;Z’I‘}Esmwn

For the LP filter we use the standard RC filter, then we put this in the original one. The unknowns are
Tf, Tp and Rn.

Since it is too complex, we can try to simplify the function and study only specific frequencies. We can
go for instance to low frequencies, but since we have both Tf and Tp, what does lower mean?

Let’s go for Tp.

113



In the low-frequency region @ <€ — with the approximations

P 2q 2
sinwTp = wTp coscquzl—wTP
we get
Wy (0)]? L )
s 1 2 w*T? w?TpT

—— — + — =
14+ w?TF 1+ w?TF 1+ w?Tf 1+ w?T{
M (Tp +Tp)?  w?Tf ( N Tp)‘
1+ wTE 1+ wlTf Ty

and in the lower region @K -—<K—
F P

[Wg(w)|* = w?*(Tp + Tr)?

That is, the BLR has a cutoff equivalent to a CR high-pass with RC= T,+T,

For just w << 1/Tp, we still get something complicated, so let’s go for w << 1/Tp and 1/Tf. At very low
frequency, the BLR seems equal to a CR with T = Tp + Tf.
This is a good thing from the noise standpoint, because a cut at LF is something we like.

BLR vs CR HP FILTER — CUT OFF

Looking at the Bode plot at LF, the BLR is similar to a CR, so it works well. At HF, the curve is equal
to the CR, which is good. However, we have no more a sinusoidal as in the CDS but an overshooting,
oscillations and then to 1.

! IWBIZ : : BODE DIAGRAM
—_— v \ highlights
W] *"T' the low-freq cutoff
2
B ° [Wer| Example:
BLR with T, =1 and Ty = 10
-10 CR filter with RC =T, + T,
b01 oo Toa [ T
' ' ' Log f
f<<1/T¢ 1/Te<f<<1/T,
(i.e. f << 0,1 in the example) (i.e. f<<1 in the example)
2(Tp + Tp)?
[Wg(w)|?* = @*(Tp + T)? [Wg(w)|? =~ %-FZ)—
1+ w?T§
2p2r2
Wer(w)|? = w?R*C? TN
Wer(@)l Wer(@I" = T apece

We can plot the lin-lin diagram for the WN computations.

The blue area is larger than the green due to the overshoot, but it is still much better than CDS, so we are
paying less noise than CDS. The problem is the overshoot, and we need to catch how much it is big as a
function of the tau. I will have a trade off between the cut of the 1/f and this overshoot.
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/IWBIZ LIN ~LIN DIAGRAM
120~ 1 highlights
(wijz 1L JUS— white noise power o area of [W/?
osf \
[Wegl? Example:
06 BLR with To = 1 and T = 10
0.4 CR filter with RC = T, + T
02
0 i i
g 05 1 1.5 2 2.5 3 f
.o m 1 1 B 1
i =5l = 3pc = 4(Tp +Tp) 4T

fni = BLR high-pass band-limit for white noise. Note that:
* fniis equal to that of the equivalent CR High-pass filter

*  f.iis equal to bandlimit of the low-pass section in the BLR circuit

The same can be done with the 1/f noise (below).

1.5
VAL LIN —LOG DIAGRAM
Iwi? N highlights
b _ r-\-‘-/-/-_:_:--- B ISR 1/f noise power « area of [W/?
N
/ [Werl Example:
05 : | BLR with T, =1 and Ty = 10
/ : CR filter with RC=Tp + T,
VAN
0 = :
0.001 0.01 0.1 1

AN 1 1 1
i~ I = 3ppe = 2n(Tp +Tp) 21T

f5 = BLR high-pass band-limit for 1/f noise. Note that:
* fg is equal to that of the equivalent CR High-pass filter

* fpis equal to bandlimit of the low-pass section in the BLR circuit

The problem of the green line is that it acts also on the signal, so which one to choose? In the frequency
domain can compare just the noise, I cannot change the correlation time of the noise. So we need to
revert to the time domain.

SELECTION OF THE BLR PARAMETERS
To study the noise in the time domain I have to use the following parameters:
- Autocorrelation of the noise
- Autocorrelation of the w_f (to be multiplied with the one of the noise and then integral of the
product).

In the time domain, there is no choice in Tp, time delay between when I open the switch and I sample it,
but it must be put in correspondence of the maximum of the signal, so Tp position depends on the shape
of the signal.

Then I have Tf. Tf = RC is the decay time of the LP filter part, and I can choose in general any value for
it because it acts only on the noise and not on the signal, so I don’t have limitations. The goal is to provide
a good reduction of the 1/f noise power and to avoid the significant enhance of the WN power. In fact,
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e.g. with the CDS we can cut the 1/f but we double the WN. Also here I have an overshoot, so for sure
we are enhancing the WN, but can we limit it?

Since at very LF the cutoff is set by 1/(Tf + Tp), it seems reasonable to reduce Tf to cut as much 1/f as
possible, reducing the tau and I’m not touching the signal with the BLR. The problem of Tf = 0 is that
the BLR is a delta and the reverse w_f of the LP filter. If I reduce the tau for the LP, I'm obtaining a delta
and I return to CDS, and the overshoot in the BLR becomes so large that it turns into the sinusoidal
waveform of the CDS.

So providing a good reduction of the 1/f noise and not enhancing the WN power are in tradeoff.

The BLR filtering is ruled by:
1. T, time delay from switch opening to pulse-amplitude measurement.
There is no choice: T, is equal to the rise time from pulse onset to peak.
In fact, T, can’t be shorter than the rise of the pulse signal and should be as short
as possible for filtering effectively of the 1/f noise.
2. T.=RC differentiation time constant: to be selected for optimizing the overall
filtering of noise. The question is: how should T, be selected for
a) providing a good reduction of the 1/f noise power and
b) avoiding to enhance significantly the white noise power
Since the BLR cutoff is set by 1/(T, +7; ), a very short T might look advisable, but it is
not: a BLR with T, << T, operates like a CDS, hence it doubles the white noise and
remarkably enhances also the 1/f noise above the cutoff frequency.
In the following discussion about the T, selection, for focusing the ideas we will refer
to a specific case: signals from a high impedance sensor processed by an
approximately optimum filter, namely a CR-RC filter. The output corresponding to
the input wide-band noise is a white spectrum band-limited by a simple pole. Such a

situation is met in practice also in many other cases.
A better insight in the issue is gained with a time-domain analysis of BLR filtering

TIME DOMAIN ANALYSIS

We have to compute the autocorrelations of noise and w_f. We have the sum of a delta and a negative
exponential, so the autocorrelation will be the sum of 4 terms: first squared (delta squared is a delta),
second squared (negative exponential shifted squared, which gives double exponential centered in 0),
cross-correlation between delta and negative exponential decay time (I get an exponential decay time in
the same position) and cross-correlation between negative exponential decay time and delta (I get an
exponential decay time shifted and flipped).
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5(c!) BLR weighting function
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So the last plot is the autocorrelation, which has to be multiplied with the autocorrelation of the noise.
Decay time of x is 2Tf, of y is Tf.

leyws = 8(t) + kepp — 1(xr = Tp)wp (T — Tp) + 1(=1 = Tp)wp (=1 — Tp)

\I (—TP 5 /1/’/_/ T o= ;_Fexp(_%)
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1 \ 1
3 Rox E Autocorrelation of white noise
F///\\ (band-limited by a single pole)
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= s | @ 1 £
ng = ng 1+f rxx(r)ﬁe TFdr—Zf rxx(£+Tp)T—e TrdpR
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In the multiplication we have two parameters, Tn and Tf (Tp is fixed), but Tn might be a data, not a
parameter. Tn is related to the BW of the noise; if the noise is white, Tn is really small, almost 0, but
since we are trying to apply everything to a general case, the WN at the end of the procedure is the WN
filtered by the matched filter, and the BW of the matched filter is the signal BW, so Tn will be related to
the BW of the signal. Also Tp will be somehow related to the BW.

The good approach now is to modify the parameters to get something that I already have analyzed, since
doing this product is complex. Performing the direct multiplication gives x, which is not easy to be
computed.
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BLR filtering of band limited WN

i) PRV 1 -f ” ! -£
ni =nz 1+J rxx(r}-z—TFe Fdr—Zf rxx(,[f+Tp)-T—Fe Fdf
—co 0

J— 0 l. 1
=n2 1+ij = Il ('I‘y,—'*':",1 —2e” TH_J— T_"'T_ dpt =
ZTF —c0
T, _Te T,
= 1+ —2— — 2 Tn—2 _
nx[ T T,
and finally
- = T _Ip
n =n2|1+_—- (1*28 Tn)]

T+ Tg

With fast differentiation, i.e. with T, << T, , it is quantitatively confirmed that the
BLR acts like a CDS with T=T,

( TP)
2 2 T
ng=2ny-\1—e '

‘We want to use a benchmark to the test the effectiveness of the filter, and the benchmark is WN. So to
have Tf really small to increase the cutoff in the frequency domain to have CDS.

The equation x we get is the equation found with CDS. It is a good thing because if Tf is reduced to 0 we

have a delta for the negative part, so the same w_f of the CDS, and here we computed a formula where,
if we put Tf << Tn (condition of the baseline restorer), we get exactly the baseline restorer.

fast differentiation with T << T,

>Te/ T,

With T, << T, the effect of BLR on band-limited white noise depends on how long is
the correlation time T, with respect to the delay T,

* with short correlation time (wide band) the noise is doubled:
with T, <?" itis  nZ ~2n?
* with moderate correlation time (moderately wide band) the noise is enhanced:

T — —
with  Ta~— itis  nZ ~1,73n2

* only with long correlation time (low-frequency band) the noise is attenuated*:

with T, > 107, itis 732 ~5Z. 2,— <0,2n2
n

* note that anyway the level is double of that given by a simple CR filter with equal cutoff,
that is with T,= RC=T,
With WN, with Tn very small (short correlation time), however, we are doubling the noise. If Tn is in
the same order of Tp we have an enhance of WN and if Tn is much larger than Tp (long correlation time)
the WN is really attenuated. In the intermediate situation where Tn is almost Tp is the situation in output
to the matched filter
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Let’s compute the same thing in the time domain with the autocorrelation. We plot the autocorrelation
of the filter with the correct Tf and Tp.

Kows BLR weight autocorrelation
BLR WEIGHTING | kwws = kss + kpp + Kps + ksp
with TF<< Tn T
'T Noise Autocorrelation
—
\I ) L - Rer) = n2e Tn
je—>] TF
i Ryx .
NOISE: 3 CASES i !
Ty | \ i a) with short correlation: ng ~ 2ng
E L )
: ! Tn : T
i Rxx H
J i b) with moderate correlation: E = 1,7371_,2{
: m——
| Tn !
i ! '
i I . ) 2 P Ny
! Ryx 1 €) with long correlation: ng ~nk- ZT— < 0,2n%
H — n

For the noise we have 3 cases: short, moderate and long correlation times.

BLR with slow differentiation
If Tf is small we get a good CDS a good cutoff to the 1/f, because at very long correlation time the noise
is strongly reduced, but we are doubling the white noise.

With Tz NOT negligible with respect to T, , the effect on white noise depends also on
the size of T compared to T, and T, . A long T, can limit the white noise enhancement

T _Tp
1+Tn ':TF (1 —2e Tn)]

"=

Let’s evaluate how long must be T in the various cases of noise correlation

« with short correlation time 7, = T, /10 itis

- — T
2 2 n

I~ 14—

"' n"( +Tn+TF)

for keeping 7z < 1,051z weneed T;>20T,=2T,
* with moderate correlation time T, = T, /2 itis

Ty (1 2
Tn+TF (:’2

Tn
Ty + Tr

%zn_,%[u )]:n_§[1+0,73

for keeping 2 < 1,05 n2 in this case we need Tg>7T,=3,5T,

Can we try to use a different Tf that doesn’t touch the signal? Again we analyze the three correlation time
cases, and for each we try to choose Tf.

For short correlation time, to keep the output noise equal to the input noise times 50%, so 1.05 of the
output, we need Tf > 20Tn to limit the enhance of the WN. However, this is not a so common situation.

The real important situation is in the case of moderate correlation time, with Tn in the same order of
magnitude of Tp. Also in this case an enhance of 1.05 of the original noise. Tf muste be 3.5*Tp.
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For long correlation times, the noise is attenuated just for any Tf, like in the CR.

* with long correlationtime 7,,> 10 T, it is

— — T, — T
2 ~ 2 1 — n ] — 2 F
"B ¥ T [ To+Tpl T, + Tp
No problem with such a low-frequency noise: it is attenuted by the BLR just as by a
CR constant-parameter filter (with equal time constant T = RC)

The most interesting case for us is noise with moderate T, . In fact, when the BLR works
on the output of an optimum (or approximate-optimum) filter for wideband noise, the
correlation time T, and delay T, are comparable, since they are both closely related to
the band-limit of the signal pulse.

*  We conclude that for avoiding enhancement of the white noise it is necessary to
select a fairly slow BLR differentiation, i.e. a fairly long T,

Tp = 5Tp

* This approach is satisfactory also for filtering the 1/f noise, notwithstanding that
making T, longer than T, shifts down the BLR cutoff frequency, hence reduces the
attenuation of 1/f noise. This is counterbalanced by the fact that the enhancement
of 1/f noise at frequencies above the cutoff is limited by the low-pass filtering in the
baseline subtraction, whereas with short Tit is remarkable.

In the end, we can get good results with attenuation of 1/f and small enhancement of WN for Tf ~ 5*Tp.

As soon as we increase Tf we are reducing the enhancement of the noise and with Tf = 5*Tp we can limit
the enhancement to 5% but we are also moving the cutoff in the frequency domain, so increasing the 1/f.

In a situation where the 1/f is orders of magnitude stronger than the WN, probably is better to cut
completely the 1/f noise also if we are doubling the WN. Otherwise, if the 1/fis not so big, it is important
to remove it without enhancing the noise we already have.

BLR filtering with slow differentiation

1
we (1) =—exp(—i) Kwe = 6(0) + kgp — 10z — Todwe(t — Tp) + 1(=7 — Tp)wp(—1 — Tp)
Tr Tr 1

1 Noise Autocorrelation
Tp T
T Ty = -H
d 1 Rxx(f) = ")zce Tn

with short correlation T, % T, /10 fornd < 1,05n2 weneed T;>20T7,=2T,

with moderate correlation 7, % Tp /2
I

withlong coreiton T, 10T,

for% < 1,05 E we need Tr>7T,=3,5T,

T

for% < 1,05 E no problem even with short T
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Summary

The BLR is a high-pass filter that acts on noise and disturbances without affecting the pulse signal.
This is the good thing.

The BLR is a switched-parameter filter; the low-pass section within the high-pass filter structure
is a boxcar integrator that acquires the baseline only in the intervals free from pulses.

The BLR can thus establish a high-pass band-limit at a high value (suitable for reducing efficiently
the 1/f noise output power) without causing the signal loss suffered with a constant-parameter
high-pass filter having the same band-limit. So we can change the Tf without affecting the
signal.

The high-pass band-limit enforced by the BLR is given (with good approximation) by the low-
pass bandlimit of the low-pass section in the BLR circuit structure. Since normally Tp is small, if
we change Tf the BW of the LP filter gives also the cutoff for the 1/f.

The combination of: (1) optimum filter designed for the case of pulse signal in presence of
wideband noise only (i.e. without 1/f noise) and (2) BLR specifically designed (for reducing the
actual 1/f noise without worsening the wide-band noise) provides in most cases a quasi-optimum
filtering solution.
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BANDPASS FILTERS

In the frequency domain, can we move the signal in a region where there is no 1/f noise? If I can move
the signal at HF where there is not the 1/f noise, I have solved the problem of 1/f. This is not always
possible, however. If I can move the signal, do I also improve the SNR?

NARROW BAND SIGNAL

Someone is giving us a narrow-band signal, whose band is very small with a center frequency fs. Narrow
band means BW < 10 Hz, and the BW is much smaller than fs, so that we can clearly see the signal in
the frequency domain - something similar to a truncated sinusoidal waveform.

Can we measure such narrow base signal in presence of WN and 1/f noise? Normally the situation is in
the image below, with a lot of noise superimposed to the signal.

Power signals with a narrow power spectrum, that is, a peak with
* center-frequency f,

* bandwidth Af, which is small in absolute value, typically Af, < 10 Hz,
and/or with respect to the center frequency Af << f;

They approximate well a sinusoid over a wide time interval T, = 1/Af,
TN AR TR A

QUESTION: how can we measure such narrow-band signals in presence of
intense white noise? And what if also 1/f noise is present?

RECOVERING NARROW-BAND SIGNALS FROM NOISE

The specs are the one in the image below. Then we create the setup with the amplifier, and so we will
have an upper limit, e.g. 1 MHz. The WN PSD is 5nV/sqrt(Hz), and for the 1/f we take fc = 2 kHz
(standard frequency corner).
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We want to study what happens in 3 different cases:
1. HF, with fs = 100 kHz, so very far from the frequency corner.
2. fs =1 kHz, just below the frequency corner.
3. fs =10 Hz, so exactly in the middle of 1/f

Let’s see some typical examples of signals with
* narrow linewidth Af,=1 Hz
* small amplitude V, <100 nV

for bringing them to higher level (suitable for processing circuits: filters, meters, etc.)
they are amplified by a DC-coupled wide-band preamplifier with

= upper band-limit f, =1MHz
= noise spectral density (referred to input) with

«white» component /S, = 5nV /VHz
and 1/f component with corner frequency f.= 2kHz

Let us consider three cases with different center-frequency f; :
» Case 1: high frequency f, =100 kHz
» Case 2: moderately low frequency f, =1 kHz

» Case 3: low frequency f,=10Hz

Case 1

The signal is at 100 kHz, and it’s really hard to detect the signal in the oscilloscope. For the signal we are
at 100 kHz, and fc of 1/fis 2 kHz, so I can cut the 1/f placing a HP filter at e.g. 10 kHz, so that I don’t
compromise the signal and I'm after the fc. If we cut all the 1/f, the only noise that remains is the WN,
whose value is the PSD times the BW, where fh is the BW of the amplifier or of the subsequent LP filter.

CASE 1: signal V, < 100 nV at high frequency f, = 100 kHz
a) observing the voltage waveform in the TIME DOMAIN, i.e. on oscilloscope display

The signal to be recovered is at frequency f, = 100 kHz much higher than the noise corner
frequency f.=2kHz, so that we can use a simple high-pass filter with band-limit f; = 10kHz
to cut off the 1/f noise and obtain a rms noise (referred to the preamp input)

\/v:,%=Js_b~J(fh—f; ~fSp - fa = S0V

S V.
and therefore LT

N
Un

Even the highest signal V, =100 nV is practically invisible on the oscilloscope display! The
noise covers a band =5 x rms value = 20 uV and the sinusoidal signal is buried in it!

Vertical scale 50uV/div

Horizontal scale 5us/div

The problem is that if we now compute the SNR, we get 100nV/5uV and the SNR is 0.02, much lower
than 1. This is not strange, because if we look at the oscilloscope, we are not able to distinguish the signal.
So from the time domain standpoint we cannot distinguish the signal so far.

If we move to the frequency domain, with a spectrometer we can detect the signal. The point is that, why
can I detect the signal in the frequency domain with the spectrometer but not in the time domain or with
the oscilloscope. The problem is that in the time domain, for noise computations, we are acquiring all
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the possible WN and then comparing it to the signal. With the spectrometer, or in the frequency domain,
we are instead comparing the amplitude of the WN and of the signal, we are not interested in the integral
of the signal and of the noise as in the time domain. We have to translate this idea in the time domain.

We can compute the power of the signal, which is included in 1 Hz, so in the frequency domain we can
approximate the signal with a rect with an amplitude of 1 Hz. The result is 70 nV/sqrt(Hz). This because
the integral of the power spectrum is the power.

Then we need to understand the power of the noise, which is 5 nV/sqrt(Hz).

CASE 1: signal V, <100 nV at high frequency f, = 100 kHz

b) observing the power spectrum in FREQUENCY DOMAIN, i.e. on spectrum analyzer display

2
SIGNAL: the power P :I%S =50-107%% v2 is within a bandwidth Af;=1 Hz

so that the effective power density of the signalis  /s; ~ AL;, =£\/;iv
s z

NOISE: the effective power density at f, = 100 kHz is /S, = 5nV/VHz

On the spectrum analyzer display the signal peak is very well visible above the noise!

£=14>>1
5

Conclusion: good S/N can be obtained with a bandpass filter having bandwidth Af;,
matched to the signal band Af, = Af;
’ Py SsAfs _ A/Ss
=14>»1
SbAfb SbAfb Sb

But how can we get this situation? The idea is to use a BP filter with a BW that is equal to the one of the
signal. Thus, we are integrating the power spectrum of 1 Hz of the signal, so all the signal, and 1Hz of
the noise. When creating a BP filter, if the Q factor is huge, theoretically it is not possible to implement
a BP filter. Even so, the filter would be so unstable to be practically unusable. In this case the Q = 10"5.

Case 2

We do the same computations of case 1, but we cannot cut the 1/f as before. For sure we will include a
HP filter, but since the signal is at 1 kHz and we don’t want to touch it, we place the pole at 100 Hz, one
decade before > some 1/f noise is included.

The good thing is that the 1/f noise part is negligible because depending on the In, and the WN is instead

integrated over almost all the frequencies after the HP filter pole.
In the end, as before, we cannot detect the signal in the time domain.
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CASE 2: signal V, < 100 nV at moderately low frequency f; = 1 kHz
a) observing the voltage waveform in the TIME DOMAIN, i.e. on oscilloscope display
The signal is now at f; = 1 kHz just below the corner frequency f.= 2kHz.
For reducing the 1/f noise we can still use a high-pass filter, but in order to pass the signal

the band-limit f; must be reduced: f; << f, = 1 kHz, typically f;= 100Hz.
The rms noise referred to the input is

J~ Jsb(fh -+ sofein(l) = \lsbf;l #Sofetn (L) ~ VST ~ suv

and therefore 1/f noise is negligible S, f.In (J;—") & Spfn

- cg02<<t
N - _7 i
vi
The situation is practically equal to that of Case 1: the signal is practically invisible
on the oscilloscope display, it’s buried in the noise!

So the thing to do is to move to the frequency domain.

CASE 2: signal V, < 100 nV at moderately low frequency f, = 1 kHz
b) observing the power spectrum in FREQUENCY DOMAIN, i.e. on spectrum analyzer display

2

Ve
SIGNAL: the power Ps==-=50-1071V2 is within a bandwidth Afs=1 Hz

so that the effective power density of the signalis /5. ~ |25 _ 70V
Vs Afs  VHz

NOISE: due to the 1/f noise, the effective power density at f, = 1 kHz is somewhat higher

— s sorede - fo_m e nV
\/Sn(ls)=j5h+3hﬂ=\[s_,,\/1+z=\/§~\/§,:3,7m

Anyway, on the spectrum analyzer display the signal peak is still well visible above the noise
VSs
VSn(fs)

Conclusion: a bandpass filter with bandwidth Af;, matched to the signal Af}, = Af;
still gives a fairly good S/N

N S8 SuUs)do  J5,(f)

=8>1

In case 1 we compared the signal with the WN. Now we cannot compare the signal with just
the WN, because we have also the 1/f. However, since the BW is small, we can compare the
70 nV with the WN and the value of the 1/f noise in the central frequency of the signal.

The contribution of the 1/f'is not so high, the SNR is reduced but still 8, quite good. So if we
could make a BP filter with 1Hz, we could get a SNR = 8. Now the Q = 1000, so not huge as before, but
also in this case we cannot implement the BP. So also in this case 2 we can detect a signal with a filter
that doesn’t exist, but ok, we can detect the signal.
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Case 3

CASE 3: signal V, £ 100 nV at low frequency f, = 10 Hz
a) observing the voltage waveform in the TIME DOMAIN, i.e. on oscilloscope display

The signal is now at f; = 10 Hz much below the corner frequency f,.= 2kHz.
For reducing the the 1/f noise we can still use a high-pass filter, but with strongly
reduced band-limit f; << f, = 10 Hz, typically f;=1 Hz. The rms noise referred to input is

Jvzﬁ ~ Jsb(f'n —f)+ Sbfcln(%) ~ Jsbfn + Spfeln (%) ~ JSofn ~ SuV

1/f noise is negligible s, 1. In ({(—") “ Spfn

and therefore i: Y5 <002<<1

N —
v2

The situation is practically equal to that of Case 1 : the signal is practically invisible
on the oscilloscope display, it’s buried in the noise!

Also in this case the 1/f noise is negligible with respect to the WN. So in the end we are increasing of 2
orders of magnitude the frequency and the 1/f is inside the log so it doesn’t change too much, so it is
negligible comparable with all the integral up to 1 MHz.

The computations for the signal are the same as before.

As for the noise, we have to do the same computation of case 2. We get a signal that is the same level of
the noise even if we use a BP with a BW equal to the one of the signal.

So the 1/fis a problem or not depending on the frequency. If we are further or close to the fc and we can
create the BP filter we are ok, but if we are in the middle of 1/f noise there is no way to recover the signal.

In the end, if I can move the signal, better to move it at least one decade of fc, as in case 1.

Summary

For a narrow-band signal plunged in white noise (i.e. with frequency fs higher than the 1/f noise
corner frequency fc ) a bandpass filter matched to the signal band is very efficient and makes
possible to recover signals even so small that they are buried in the wide-band noise.

For a narrow-band signal plunged in dominant 1/f noise (i.e. with fs lower than the 1/f noise
corner frequency fc) a bandpass filter matched to the signal is still quite efficient and in many
cases makes possible to recover the signal. However, if we consider signals at progressively lower
frequency fs, the 1/f noise density at fs progressively rises, so that the available S/N is
progressively reduced.

Open questions

We need efficient band-pass filters with very narrow band-width. We need to understand how to
design and implement such narrow-band filters , but we shall deal with this issue after dealing
with the following question.

If the information is carried by the amplitude of a low-frequency signal, it has to face also 1/f
noise. It would be advantageous to escape this noise by preliminarily transferring the
information to a signal at higher frequency. However:
o How can we transfer the signal to higher frequency if I'm able to create the BP filter?
o If we transfer to the higher frequency also the 1/f noise that faces the signal, this makes
the transfer useless: how can we avoid it? How can I move only the signal and not the 1/f
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noise? This is normally an issue. In fact, if e.g. we move the signal with something
(multiplier) that has a lot of WN or 1/f noise, we are again in trouble.

- For escaping 1/f noise, a low-frequency signal should be transferred to higher frequency before it
mixes with 1/f noise of comparable power density: that is, frequency transfer should be done
before the stage where the signal meets the 1/f noise source.

- The frequency-transfer stages have their own noise, with different intensity in different types.
Unluckily, the types with lowest noise bear other drawbacks, typically a limited capability of
transfer, restricted to moderately high frequency.

- For achieving our goal, the signal must be higher than the noise referred to the input of the
frequency-transfer stage. If with a given stage the signal is not high enough, preamplifying is not
advisable because a preamp brings its 1/f noise. In most cases it is better to transfer the signal «as
it is» by means of a frequency transfer stage with lower noise and accept the limitations of this
stage, typically a moderate operating frequency.

MOVING SIGNALS IN FREQUENCY - SIGNAL MODULATION
At this moment we suppose that we can create any BP filter, and we focus on moving the signal. The
idea is the modulation.

Let’s consider a small in BW signal centered around zero with small amplitude, and we are interested in
the amplitude. The idea of modulation is to multiply the signal times a reference, that in this case is a
cosinusoidal waveform. Then we multiply the two in the time domain. We get a cosinusoid with
amplitude A*B, and B is a data.

AB
Al X(t) anatog | 1Y :X(lz'mm aNra ‘)k“ ans
T t MULTIPLIER T t

A

N ANAWAN AN AL m(t) = B coS(27 fyr t + 9y

VVVV V7t

* Information is brought by the (VARIABLE) amplitude A of a DC signal x(t) = A .
(NB: a real DC signal is a signal at very low frequency with very narrow bandwidth)

* An analog multiplier circuit combines the signal with a sinusoidal waveform m(t)
(called reference or carrier) with frequency f,,, and CONSTANT amplitude B

+ The information is transferred to the amplitude of a sinusoidal signal y(t) at frequency f,,,

y(t) = A-B cos(2n f,, t + @)

Normally phi_m disappears later on, because phi_m = 0 is a value that allows to maximize the SNR.
What we want to do is a multiplication in the time domain, so a convolution in the frequency domain.
A constant value in the time domain is a delta in the frequency domain, something that is almost constant
in the time domain, it is something with a small BW in the frequency domain. In the frequency domain

the cosine has two deltas at fm and -fm, with a positive sign.

So let’s move to the frequency domain, where we need to make the convolution.
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Y(f) = X(f) * M(f)

The signal is shifted in frequency by +f,, and —f,,
and in phase by + ¢, and — ¢,, respectively

y(t) = x(t)-m(t) =
=A-Bcos(2nf,t +,)

We have a problem. In fact, the result of the convolution is not always correct.

Convolution in the frequency domain

In the time domain (TD) the amplitude modulation is the multiplication
of the signal x(t) (with variable amplitude A )
by the reference waveform m(t) (with standard amplitude B)

y(t) = x(t) - m(t)

In the frequency domain (FD) it is the convolution
of the transformed signal X(f) by the transformed reference M(f)

Y(F) = X(f) « M(f) = f X(@) M(f — a)da X

Convolution is more complicated in FD than in TD because:

1. the functions to be convolved are twofold, that is, they run in the positive
and negative sense of the frequency axis

2. Complex values must be summed at every frequency for obtaining Y(f).

In general the result of FD convolution is not as intuitive as that of TD convolution
and the module |Y(f)|is NOT given by the convolution of |X(f)| and|M(f) |

YOI = 1X(D1 = 1M
we must first compute the real and imaginary parts of Y(f) and then obtain |Y(f)|

Convolution is more complex in the frequency domain rather than in the time domain. In fact, in the
time domain we don’t have ‘negative time’, and we don’t have the imaginary axis, in the time domain
we have real functions. In general, any Fourier transform in the frequency domain is a complex number.
So integral x should be done with complex number, not trivial.

In general, the convolution in the frequency domain is not given by the convolution of the absolute
value of the two signals. The problem is that, from a graphical standpoint, we can make only the
convolution of the amplitudes, not the convolution of the phase.

However, there are some special cases where the convolution, at first approximation, is the convolution
of the modulus. These cases are:
1. X(f) confined in a narrow BW, and this is the case of our signal.

128



2. M(f), the reference function, has a spectrum composed just by deltas with a fundamental fm is
much greater than the signal BW. This because we don’t want the overlapping of the replicas,
otherwise we would need to convolve also the phases.

If both conditions 1 and 2 are verified, we can make the convolution of the modulus, shifting X(f) on any
line (delta) of the second function M(f). We still get a complex function, but replicas are not overlapping.

In the cases here considered, however, the issue is remarkably simplified because
a) X(f)is confined in a narrow bandwidth Af,

b) M(f) has a line spectrum with (fundamental) frequency f,, that is much greater
than the signal bandwidth f,, >> Af,

In the convolution X(f) * M(f) each line of M(f) acts on X(f) as follows

= Shifts in frequency every component of X(f) by + f,, and -f,,
(i.e. adds to each frequency + f,, and -f,,)

= Shifts in phase every component of X(f) by +¢,,and - ¢,

(i.e. adds to every phase +¢,, and - @,,)
In cases with Af, << f,, there is no sum of complex numbers to be computed because at any
frequency f there is at most one term to be considered, all other terms are negligible.

The result of the convolution is easily visualized: every line of M(f) shifts X(f) in frequency
and adds to X(f) its phase. Therefore, | Y(f) |is well approximated by the convolution
of |X(f)| and|M(f)]| and |Y(f)|? by the convolution of |X(f)|? and | M(f) |2

YOI = 1XUOI = IM()I Y(HI2 = IX(OIP =MD
Example
Example of quasi-DC FREQUENCY DOMAIN X/
NB signal (with very long T) _
1 X(f)_A1+j2nfT5
Af = T —
A _ Lt S i '\‘
x(r):l(r)»ﬁ‘e Ts 1\
Im] f
B B
m(t) = B cos(2m fnt + @p) | 8 + fm) 50U = fin) I
with f,>> 1/T !
: -f”' :fm f
! [yl i
.!\ EX L EX . 9
Yt)=x(t)m(t) (:\ SIXC + )l S XU = fad .’:\
/i A
et S
Y(f) = X(f) = M(f)

Now we want to apply this idea to a signal that is also a cosinusoid, as below. Also the reference is a
cosinusoidal. Delta_fs of the signal is 2*fs = BW, and it must be much smaller than fm, so the hypothesis
is verified.
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m(t) = Bcos(2nfut + @) | /M/ B !
l 55(f+fm) EMf_fm)I
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Now we want to check the same things in the time domain, moving to it.
By exploiting the a well known trigonometric equation
1 1
cosacospf = Ecos(a -8 +§cos(a + )

in cases with sinusoidal signal and sinusoidal reference

x(t) = Acos(2mfst)

m(t) = Bcos( 2nfint + @)

the result is directly obtained

AB AB
y(©) = x(©) -m(t) = T cosl2n(fs = fn)t = @] +—-cos[2(fs + fr)t + 9]

We get the final formula in the box. The frequency of the cosine is fs — fm and the other fs + fm. It makes
sense because the external deltas are centered at fs + fm, and the inner ones at fs — fm.

These are the cosinusoids in the frequency domain.
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SQUAREWAVE AMPLITUDE MODULATION

Modulation with a squarewave reference m(t) can be implemented with
circuits based simply on switches and amplifiers, without analog multipliers

Al x(t) » AB .
1\ 2 ./I - rTI_I-l_rI_I.I_II;II_II__l _1'\ t
D >

/ .I | y(t)=x(t)-m(t)
minininis -8
Ooooo |

t

* Insuch cases, the circuit noise referred to the input is due mostly to the switch-devices
and is much lower than that of analog multiplier circuits.

* Metal-contact switches have the lowest noise, but they can operate at limited switching
frequency, typically up to a few 100Hz

* Electronic switches (MOSFET, diodes, etc.) operate up to very high frequencies but have
fairly higher noise (anyway MOSFETs operating as switch-device have lower noise than
MOSFETs operating as amplifier devices).

It is not a sinusoidal waveform, but it is a much easier modulation than with an analog approach, because
treating switches is easier. With a square wave modulation we can also avoid to double the noise.
Furthermore, the cost is much smaller.

We could also use just one amplifier because we need to create +B for the signal and -B for the reference.
If +B is different from -B, we get an offset, which in the frequency domain is a delta in 0. Then when I'm
convolving in the frequency domain, if I have a line at 0 Hz, I'm moving the signal also at 0 Hz, not only
at the frequencies of the reference. The problem is that we have 1/f noise at 0 Hz, so we are placing part
of the signal in the 1/f noise zone. So we use a single amplifier to have the same B for + and -.

Switching example: differential amplifier with alternated input polarity

14 ) ylt)=x(t)-m(t)
15 ><\ 5 1o,
+ JRUI o N T I t
O AnNAE = = EET
[ t
Switching example: chopper (ON-OFF modulation)
14 —€ y(t)=x(t)-m(t)
T x(t)
r— i
1 [TTTTTT1 t

I_II_II_II_I\t

Sometimes, we could switch from amplifier and ground (second plot), but we have to manage the offset,
because the ground will have an offset. We could use this solution because sometimes we are forced to
use it because for instance the modulation is not an electrical modulation but an optical one, e.g. the
sensor is a light signal and we want to modulate the light. Instead, it is quite difficult to create ‘negative
light’, so to modulate a light signal the second approach of the previous image is the only way to go.

131



In both cases, we have to manage square waveforms.

Squarewaves and F-transforms.

B-msq
5 m m,,(t) = symmetrical squarewave (from +1 to-1) at frequency f,,
t B:[Mg,[
2 2
2B 2B P g 2B 28
— 73 B 7’3 4
g 75 -’ | 1 o R
_5fm _3fm 'fm fm 3fm 5fm f
had Boprs for+r = @k + D fin
B-Ms(f) =B Z > [6(f = far+1) + 6(f + far+1)] with ), (=DF 4
= T Qk+1) w

In the amplitude modulation:

* each line of the reference M acts like a simple sinusoidal reference, i.e. shifts by its
frequency and its phase the signal X and multiplies it by the amplitude B-b,,;

« if the squarewave is not perfectly symmetrical (e.g. it has asymmetrical amplitude and/or
duration of positive and negative parts) there is also a finite DC component with
amplitude B, (possibly very small)

* the DC component does NOT transfer the signal X in frequency, just «amplifies» it by B,

The Fourier transform of a square waveform is a sum of deltas. How can we get this Fourier transform?
The good thing of the transform is that it is composed only by lines, and it is a requirement for the
reference. The red arrow is the small delta at 0 Hz that is present if we have a small offset in the B values,
and we want to avoid it.

We can study the chopper squarewave. We can study it as a symmetric square waveform plus an offset
of B/2. And the offset due to B/2 is a delta at OHz, so it is the exact same Fourier transform of the
previous case but with a delta in the middle.

Chopper waveform

Nowadays, all signals are fast and optical. When we have an optical signal and we want to modulate it,
we cannot use just a sinusoidal modulation, because the light cannot be negative. So to create a square
waveform that is ‘light’ and ‘no light’, we can use a wheel with holes that is rotating, so that the laser is
passed either through the hole or stopped. If we increase the number of holes we are changing the duty
cycle. This is the chopper.

The chopper waveform helps because a replicated signal in the time domain corresponds to sampling in
the frequency domain. So to compute the Fourier transform of something that is replicated, I take the
Fourier of one replica (the sinc for the rect) and then I sample it, thus getting the deltas of the Fourier

transform in the next image. Of course we need to take the modulus.

Also in this case we are happy because we have only lines. The only problem is the red delta at OHz.
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B‘mch

mgy(t) = chopper squarewave (from +1 to zero) at frequency f,,
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Chopper squarewave with amplitude B =
= Symmetrical squarewave with amplitude B/2 + DC component with amplitude B/2
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In the amplitude modulation by a chopper:

* areplica of the signal X «amplified» by B/2 is transferred in frequency by the squarewave

+ another replica of X «amplified» by B/2 is NOT transferred, it stays where it is

If we have the signal, we need to check if its BW is much smaller than the distance of the lines, fm. Then

if the reference is composed only by lines. At this point we can perform the convolution in a graphical
way as below.

1x]
Narrow-band DC input signal 2
Squarewave reference B:[Ms,l
(slightly asymmetrical case)
=B 2B
g | ™ 20 28
T 1 t ’ | 475
'Sfm _3fm _fm fm 3fm 5fm f

[Y] =B [Mg*[X]
Squarewave modulated )
254
2B

output signal /\ AI "
By-A . B L1
A IR b
3

'Efm _3fm _fm fm fm 4‘5fm f

The problem is that we are increasing the number of problems we have, because the signal is no more
cosinusoidal, but a sum of BP filters that doesn’t exist.

LS

Summary

- Asintuitive, narrow-band filtering is very effective for recovering narrow-band signals immersed
in wide-band noise.

- Besides wide-band noise, however, other components with power density increasing as the
inverse frequency (1/f noise) are ubiquitous in electronic circuitry (amplifiers etc.). In the low-
frequency range they are indeed dominant.

- At low frequencies the 1/f noise added by the circuitry is overwhelming, so that the solution of
narrow-band filtering becomes progressively less effective and finally insufficient for recovering
signals with progressively lower frequency.
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An effective approach to recover a low-frequency signal is to move it to higher frequency before
the addition of 1/f noise. That is, to modulate the signal before the circuitry that contains the 1/f
noise sources.

Narrow-band filtering can then be employed to recover the modulated signal; we will now
proceed to analyze methods and circuits for narrow band filtering.
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BP FILTERING WITH HP PLUS LP FILTERS — CR/RC

The basic idea to develop a BP filter is to use a LP and HP filter combined. In the middle we need to put
a buffer to decouple the impedance. We are interested in a very small BW, so I suppose that the same
value for the pole of the HP and LP is chosen, they have the same tau.

Cascaded two-cell filter:
low-pass T,;=R;C; f,=1/2nT,
high-pass T,= R,C,  f,=1/2nT,

i )

J 2 2

Vw1 Tm IHI? = g L
P 2

With equal poles T, =T,=T and f,; =f,=f,

if I
HeJo 1 =—L
(1+4) 1+(f)
1
at band center f=f, peak value |H(fp)| =3
and phase zero arg H (fp) —0

We are interested in the module of the delta response for the time domain and in the Fourier transform
of the delta response (absolute value and squared for the noise). We will consider also the phase.
The resulting t.f. for the BP filter has the following key parameters we are interested in:
- Value at the central frequency.
- Phase in the central frequency.
- Bandwidth. We need to define it because it is difficult to define the BW if the shape of a signal or
a filter is not a rect.

The peak value of the delta response at the central frequency is 72, but we would like to have 1, even if
the gain is not important (high gain allows to neglect the noise of the following stage), while the phase is
0, so it is good, it seems that the combination of these two filters work well.

Let’s plot the Fourier of the delta response.
Plots of |H(f)| withf,=1

NB: peak is 0,5

IHI — 1 e
04 HIF i T 3d8_
01} P
0,2 I
| Joaz f" g/p‘ﬂ
0 0,01 N Y
0 2 4 6 8 f 0,01 0,1 1 10 f
Linear — linear plot Log — Log plot (Bode plot)
[H(f)] vs. f [H(f)] vs. f
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To understand the BW of the filter it is better to use the Bode diagram. In general, for the LP and HP
filter, the BW is defined as the frequency at which the gain drops of 3 dB. We can make the same thing
also for the BP filter (right plot).

BANDWIDTH
We have to take the modulus, define the peak value and go down of 3 dB with respect to %.
I 1
H] = fpf . peak value at f=f, [H(f)| =5
1+()
_ _ H(f, 1
3dB down points f,4; and f,q H(fpa)| = [H(fpa2)| :L\gﬂ =2z
D S L
fr 1+x%2 242

X fpdl,pdz = (‘/Ei 1)fp

3dB down pass-band Afp = fpdl - fde = pr

NOT narrow-band !! — =2
fo

In the end we get the result x. The final result is that the BW is two times the central frequency, and this
is not a narrow band, so we don’t have a narrow band filter. This is a big problem from the signal point
of view, but the purpose of the BP is to collect a small amount of 1/fnoise, so we are interested more in
the noise - let’s study the same thing from the noise standpoint.

NOISE COMPUTATIONS

We have to study the absolute value squared of the Fourier transform of the delta response. Let’s consider
a unilateral spectral density and compute the ENBW, that allows me to design the noise in the frequency
domain as a rect. |H(fp)| is the central value, delta(fn) the ENBW.

From the definition of white noise bandwidth Af, (with unilateral Sg) A
— N2 . 1 .
ng =Sy |H(f,)| - Af =Sy "3 M

by comparison with the computed™® output power

2 = ° N2 df = - T
=Sy [ MR dR =S5 fy-g
0

1 T
we get Afy =7fp =ﬁ=§ﬂ‘fp ‘

* Noise computation

2x x

— @ (T @ 2 o

2 =Sy | —B  _df=Suf | ————dx=85f, | —— =

n“—SuJ’ l izdf Spfp J‘.' I1+I‘]2d1 Sslp J; T zdx
+

R R | T U 4
, +E ) mu‘x :.SB]p~E\ur(!_qx|0 :‘SH/P'E

L x 1
R ‘{|*EW
We have to compute the value of the noise in the real case.
The result is that the central value is ok, the shift in phase is perfect (0), the BW from the signal point of
view is not good, but also from the noise point of view (pi * central frequency). For example, for 1 kHz

we have 300 kHz of noise BW compared to the 10 Hz used as an example in the previous video.
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LCR RESONANT FILTER

°© v, 1 ok
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Denoting by H(w) = TR I. 71 . . 1 wehave |[Z=R-H(w)
in in (——w2)+jw—
LC RC

1
At the resonance frequency | w, = 7ic the reactive impedances cancel each other

so that the impedance is purely resistive  z(w,) = R
thatis H(w,) =1 and argH (w,) =0

Another basic parameter is the characteristic resistance R, , which for the oscillation
at w=w, represents the ratio

‘ (amplitude of voltage on C) / (amplitude of currentin L) |

It can be designed in a parallel way or in a series way. Z is the impedance of the structure; we want to
study the t.f. of this filter, computed as the ratio between the current output and the current input. We
are lucky because Vout/Iin is the impedance Z, that we can plug in the formula.

Parameters

One is the resonance frequency, which is the frequency that allows to have a purely reactive impedance
for Z. Moreover, the absolute value of the t.f. at the resonant frequency is 1, and the phase is 0. The other

is the characteristic resistance Ro, which is the ratio between the amplitude of the voltage on the capacitor
and the current in the inductor.

We can also define alpha_0.

i . _ 1 1
Starting from the poles: S12 = —ag + [ag — w? wo = 7= T

We can study the behavior of its &-response:

The 6-response h(t) is:

=
=]
——
N

» damped (real poles) if wi<a?, thatis R? < (

+ critically damped (coincident real poles) if @& =a3 , thatis R2 =

=~

| N|
N—
n

N
no

» oscillatory (complex poles) if ©3>ad, thatis B2 >

N
NS
~——

The higher is R with respect to R, the lower is the dissipation

and the slower the damping of the oscillation

If we study the behaviour of the delta response of this function in the time domain, we will find that it
has 3 different behaviours, since we have 3 different parameters. So the delta response can be:

- Damped, with real poles.

- Critically damped, two coincident poles.

- Oscillatory, two c.c. poles.
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So the higher the value of the resistance, the lower the dissipation of energy and the slower the
damping of the oscillations.
The dissipation and energy give us the possibility to define the resonant quality factor Q.

Resonant quality factor — Q

The energy E stored in the circuit oscillates from C to L and back while it decays
exponentially due to dissipation in R.

The lower is the loss rate, the higher is the resonator quality.
The reciprocal of this loss rate is defined Quality Factor Q of the resonator

hat i leul Q= _R
thatis -_———=— Wwe can calculate 725{071?0

The higher is R >> R, the lower is the dissipation (Q = e for R = =)

the transfer can be expressed in terms of resonance frequency w, and quality factor Q

jeo -G
Q
Hw)=— ¢
) (0% — w?2) +jow ,%

We can more simply define Q = R/Ro. So the higher R compared to Ro, the lower the dissipation,
because Q goes to infinite. We can also express the t.f. as a function of Q.

The responses as a function of the Q are the following. If Q is small, the response is damped.

hit) he) 1(1)21:/;, _zgg, —_
14 fo=1 Q=5 1 = TL’ COS W,
oL e — |
0 10 20 30
o6 [ hit) f=1 [a=10]
0 nf\l\l\n,\,\
[ r
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h(t) f,=1 Q=50
01l
0 nnAAAAnAAA[\A[\l\[\[\/\/\l\l\[\l\l\[\/\v/\vl\l\l\z
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0 _ 10 20 30

Increasing Q we are increasing the tau of the envelope in which the oscillations are confined and damped.
For Q = inf the oscillations will be self-sustained.

Phase

The following is the phase of the delta response in the frequency domain. For omega that goes to +- inf
the absolute value goes to 0, and this is good for the BP, while the phase goes to -+90°.

The phase at the central frequency is instead 0. We are also introducing another parameter, that is how
much the phase changes as a function of omega as a function of the quality factor.

The variation of the phase with respect to omega is proportional to Q.
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For w = + oo

Forw = - oo

For w=w,

@ = argH (w) = arctg [wiwo (wy + w)(wy — w)]

|[H 20 ¢ =argH(w,) =2 -1/2 (-90°)

|[H| 20 @=argH(w,) 2 +m1/2( 90°)

H(w,) =1 ¢=argH(w,)=0 and

The phase impressed by the filter is exactly zero at exactly the band center,
but rapidly increases as w is shifted.

Note that the higher is Q the steeper is the increase (

Let’s plot the phase.

p=argH \
0°
N
IOO“ -~ ! - a .

©=argH

100°

do
dw

°
) « Q R HeHBeR /

100°

100°

If Q increases, the phase is much steeper.
In fact, the idea of the BP is that we start from a signal that is modulated at a certain frequency and so
we would like to put the BP exactly at the modulation frequency. But if the modulation frequency is not
constant, if we have a steep behaviour, as soon as we move a bit the frequency we change a lot the phase,
and this can be a big issue = the higher the Q the smaller the BW compared to the central frequency
(good) but as a drawback, the phase becomes much steeper.
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Module
We want to study what happens at LF, HF and around the central frequency.

2
w2,wo 1
@) = & - —
2 W22 4 2. 95 2 (@ Wo)? (@ +wy
(0 —0®)? +w 0Z 1+Q(w0 )( [3) )

2

* «Lower wing» approximation valid for w << w,
w1 i
= =—_ 1.e. |Hy ()] o< w
= =55

« «Higher wing» approximation valid for w >> w,

Dl i
@) = @)l = 225 € )l o2

+ «Central lobe» approximation valid for |w — w,|<< w, , that is for w = w,

|“(w)|2 ~ |“C(w)|2 2
W — Wy
1+ 4Q2 (—0)

We are interested in the BW of the filter, that we can suppose is something around the central frequency,
so we can study the central lobe.

Let’s take some examples for the LRC t.f..

IH| [ center approx [H [

0,51

0,001

0 1 2 3 4 f 0,01/ 0,1 1 10 f
«wings» approx |H, [ and [Hy/

il IH]

center approx [H,|

7\_
0,01
0,001

0,0001
1,4 f 001 01 1 10 f

«wings» approx [H;| and [Hy/

140



Increasing Q we can notice that we have a smaller BW for the filter, which is what we would like to
obtain.

Comparison of filters with different Q

[H] m———— o
Wing approximation critically damped
- Q=05
1t ) i

0,1

0,01+

0,001¢

0,01 0:1 1 10 f
Signal Bandpass
Defined within the points where we have 3 dB down compared to the central value.

Bandwidth for signals: defined by the 3dB down points w 4 and wgy
where [H(wq) |? = [H(wgn) |> = %

Awg = wgy — wg

For cases with Q >> 1 we can use the central lobe approximation

1

1
|He(w)l} = ——————— ==
2 (Wd — W, 2
1+4Q (—‘14% )
Wy
and we find Way — Wo = Wy — Wqp = E
n g 2 @ Aa Af il
The signal bandwidth thusis | Aws =— g ol
¢ w  fo Q

Two basic advantages with respect to the CR-RC bandpass filter are quite evident:
* No signal attenuation at the center frequency
* Narrow filtering bandwidth even with moderately high Q values

For Q >> 1 we can use the central lobe approximation to solve the equation. This because we are
interested in a very small BW.

So the basic advantages of the resonant filter compared to the CR/RC BP filter are that:
- No signal attenuation at the center frequency, where the modulus value is 1.
- Narrow filtering BW even with moderate Q values.

Noise Bandpass

We want to write the noise as Sb*delta(f), so as a rect. In this case the value in 0 is 1, so we have just
Sb*delta(f) and not Sb * value in central frequency * delta(f).
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The bandwidth for white noise is defined by
3 2
= [ o o
0

In cases with Q >> 1 we can use for H(f) the central lobe approximation and
take into account that |H,(f)/? is with good approximation symmetrical with

respect to the band center f,, thus obtaining

0 2 o0 2
f ()| df =2 f He(P
o fo

and therefore

. 1 ; Gl 1 o
Mp=2 | ———— df =2 [ — dx=52
,{sz( Qf 1+x 2Q
il o
Afn=§60=§Afs

PROS AND CONS

.

Real capacitors and inductors are not pure C and L. Their equivalent circuits
include also finite resistances that model the internal sources of energy
dissipation that inherently limit the Q of resonant circuits.

In general, the dissipation is higher in components with higher value of L or C.
Good quality capacitors with low dissipation are available from pF to about 1 pF.
Inductors are more problematic than capacitors. Good quality components are
available from nH to a few 100nH. Even components with fairly small L (typically

a few 10 nH) have non negligible internal resistance.

Stray reactances must not be overlooked. In discrete circuitry stray capacitances
are in the order of pF and stray inductances are in the order of nH. In integrated
circuits the values are much smaller, thanks to the very small physical size of

the components.

Since the resonanceis at  f, :; , for obtaining a low frequency f,
high values of both L and C are reqmred in fact, with C=1 uF and L= 100 nH one
gets f,=1,26 MHz. Therefore, the Q values really obtained in the tuned filters
progressively decrease as the desired resonant frequency decreases.

* For high frequencies f, > 100MHz values of Q > 10 are currently obtained, up
to almost Q = 100 with clever design and high quality components.

* For intermediate frequencies 1MHz < f, < 100MHz values up to Q = 10 are
obtained with careful design and implementation

* For f, < 1MHz it becomes progressively more difficult to obtain high Q values
as the frequency decreases. Anyway, even with moderate Q the performance of
the tuned filters is remarkable and in many practical cases filters with Q = 5 are
really satisfactory.

* For a given Q, note that the noise bandwidth is reduced as the resonant

frequency f, is reduced: Af,, = 7—2[%’ .

Constant-parameter tuned filters are a simple and economical solution, widely
employed in prefiltering stages and other simple situations, but their use in high-
performance filtering is hindered by some intrinsic drawbacks.
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The accuracy and relative stability of f, directly depends on that of the C and

L values. Drift of f, due to aging and temperature must be kept smaller than

the filter bandwidth, in order to avoid uncontrolled variation of the output signal
amplitude and phase. This may be really difficult in case of very narrow bandwidth.
In particular, strong phase variations are caused by even small variations of f,
because of the strong do/df at band-center of filters with high Q

Cascading simple filter stages for improving the cutoff characteristics is not practical
for narrow-band filters, because they should have very accurately equal and stable f,.

The value of C influences both the center frequency f, and the bandwidth Af ,
so that it is not easy to design a filter with specified f, and specified Af; .

It is even more difficult to design a filter with adjustable f, and constant bandwidth
Afs , as itis required for measuring power spectra and for other applications.

In cases where the frequency of a narrow-band signal is not very stable, a filter
with very narrow bandwidth can be employed only if its center frequency can be
adjusted to track that of the signal. As above outlined, this is not easy to obtain.
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ASYNCHRONOUS MEASUREMENT OF  SINUSOIDAL
SIGNALS

It is not possible a RLC filter with a high Q factor and it is not possible to create a good BP filter at low
frequency (where LF is hundreds of kHz).

One idea could be to change the approach. We can resort back to the time domain and study the ways to
detect the amplitude of a sinusoidal waveform in the time domain.

In the asynchronous approach (that we won’t use) we have a cosinusoidal with a certain amplitude and
in some cases we know the frequency, but not the amplitude. An example is the PS in our network. We
have three different approaches, as below

* Asynchronous (or phase-insensitive) techniques were devised for measuring
a sinusoidal signal without needing an auxiliary reference that points out
the peaking time (i.e. the phase of the signal).

* They are currently employed in AC voltmeters and amperometers.

* The basic circuits of such meters are
the mean-square detector
the half-wave rectifier
the full-wave rectifier

* For a correct measurement of the amplitude of the sinusoidal signal, it is necessary
to avoid feeding a DC component to the input of an asynchronous meter circuit.
Therefore, the meter must be preceded by a filter that cuts off the low-frequencies,
that is, a band-pass or a high-pass filter.

Mean-square detector
I want to measure the amplitude, I'm not interested in the phase. I take the square of the sinusoidal, and
we remove the HF part (cosine) with a LP filter. This is good because I can get the amplitude.

A2 A2
x(t) = Acos(wt + 9) y(0) = 4% cos?(wt +9) = 5+ - cos 2t +29)
AZ
Analog Z(t) _ 7
4 Multiplier . Low-Pass
: — ) t Filter ot

* Itis a power-meter: the output is a measure of the total input mean power,
sum of signal power (proportional to the square of amplitude A?) plus noise power.

* The low-pass filter has NO EFFECT OF NOISE REDUCTION. In fact, it does not average
the input, it averages the square of the input.

* For improving the S/N it is necessary to insert a filter before the Mean-Square Detector

The problem is that the output is a measure of the total input mean power. This means that if we have
an offset we are also measuring the amplitude of the offset, it is not filtered by the LP filter. Normally the
offset is in the signal, if e.g. it is not modulated in a symmetrical way.
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More importantly, we are using a LP filter to remove the frequencies at two times the frequency of the
signal, not to increase the SNR, so also the noise is multiplied by itself and included in the constant value.
So the SNR of this approach is not very high.

Hence one ideal is to find a new way to compute the amplitude of the cosinusoidal. In fact, if we find a
way to compute it, we don’t need the BP filter anymore.

Rectifier

The idea is to use a half-wave rectifier. So we rectify the waveform, we compute the average value with
the LP filter and in the end the average of the rectified amplitude is A/pi. It is a constant output
proportional to the amplitude.

We can also make a full-wave rectifier. The point is that the diode is like a comparator, that checks if the
signal is positive or negative. It works perfectly theoretically, but we have also to consider its noise.
Moreover, also the sum of the signal and the noise goes through the full-wave rectifier, so the crossing of
the zero to activate the diode depends on the level of the noise.

‘ Half-Wave Rectifier (HWR) ‘

x(t) = Acos(wt) 2(8) = 4

mw
ﬁU%ﬂUGV . AARME [ Low-Pass | ——=
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7=
w -

1
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‘ Full-Wave Rectifier (FWR) ‘
x(t) = Acos(wt) z(t) = E

T
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- The measurement with a rectifier is not really asynchronous, it is self-synchronized. The
sinusoidal signal itself decides when it has to be passed with positive polarity and when passed
with negative polarity (in the full-wave rectifier) or not passed at all (in the half-wave rectifier).

- In such operation, the LPF reduces the contribution of the wide-band noise, thus improving the
output S/N. However, this is true only if the input signal is remarkably higher than the noise, i.e.
if the input S/N is high.

- As the input signal is reduced the noise gains increasing influence on the switching time of the
rectifier, which progressively loses synchronism with the signal and tends to be synchronized with
the zero-crossings of the noise.

- The loss of synchronization progressively degrades the noise reduction by the LPF. With
moderate S/N the improvement due to LPF is modest; with low S/N it is very weak. With S/N
< 1 there is no improvement, there is not even a measure of the signal: the output is a measure of
the noise mean absolute value.

- In conclusion, meters based on rectifiers can just improve an already good S/N. They can’t help
to improve a modest S/N and it is out of the question to use them when S/N <1. For improving
S/N it is necessary to employ filters before the meter.
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SYNCRINOUS MEASUREMENT OF SINUSOIDAL SIGNALS

EXAMPLE

Let’s consider a Wheatstone bridge. The PS is a sinusoidal waveform. This configuration is an easy way
to move the signal to high frequency, simply modulating the frequency of the PS.

The problem of modulating the signal is that we have 1/f at LF, and we want to move only the signal at
HF, not also the 1/f noise. So if we modulate the output we are modulating both the signal and the noise,
so the idea is to modulate it at sensor level.

The voltage we apply is sinusoidal (or cosinusoidal) and we get still a sinusoidal signal in output whose
amplitude changes as a function of temperature (the information is in the amplitude and not in the
frequency because we are modulating the signal).

KEY EXAMPLE

for the study of synchronous measurements and narrow-band filtering

AC voltage supply

SIGNAL OUT
x(t) = Acos(wy,t + ¢)

A to be measured

A ANAWAWAWANY
VVV VY 6

7

@ constant and known*

Ry = Ry{8) resistance tracks a variable &,
REFERENCE (e.g. a temperature or a strain);
resistances R, , R3, R, are constant

m(t) = B cos(wpyt)

Shows the frequency and phase of the signal
i.e. points out the peak instants of the signal

*in this example ¢=0 since the preamp passband limit is much higher than the signal frequency f,,

Since we are modulating the signal, we know the reference. How can we use this info to extract the
amplitude of the sinusoidal?

We want to move in the
time domain, where we
want to measure the
amplitude of  the
sinusoidal.

A constant value of the
resistive sensor gives us
a sinusoidal in output
with a constant
amplitude. If it changes,
the amplitude changes.

The goal is to extract a
LF signal that is the
amplitude of a signal at
HF.

KEY EXAMPLE
for the study of synchronous measurements and narrow-band filtering

x(t) = Acos(wmt + @)

WENTURTOT
TRTRTATATEALG

7

A to be measured
@ constant

m(t) = B cos(wpt)

JANWAWA)
\VARV/ \VARV

R; e.g. strain sensor, the resistance varies following a mechanical strain &

a) in cases with constant strain ¢
constant A > x(t) is a pure sinusoidal signal

b) in cases with slowly variable strain & = ()
variable A = A(t) = x(t) is a modulated sinusoidal signal

SLOW variations = the Fourier components of A(f)=F[A(t)] have frequencies f<<f,

146



Peak sampling

Voue = A
Signal Vim=4 out
A > Sample&Hold > ¥
DC output signal
Reference 51)
—!\—«S—H—A—/—\a 5| Sampling «l—>
VvV VIV driver
Time domain i Frequency domain .
U +fm 38U = f)
Signal x(t) 580 + fm) I/ 5
AN ANNAY. v/ \NEVA N\ N\ |
/ \ \ / \ / + - -
\VARVARVARVARVARVERRE. w7
w(t) = 5(t)
Weighting I
1

t

f

NO FILTERING ACTION: output noise power = full input noise power

We have to measure the amplitude and we have the sync, so we can use a S&H because we know where
the peak is, so we sample the signal at the maximum amplitude. It is an approach that works.

Let’s consider an ideal delta for the sampling. We sample the signal and get the amplitude.
The problem is that of course we are getting the signal we want, but since we are using a delta we are
also sampling noise, e.g. if we have a flat spectral density as for the WN, we are collecting a lot of it.

So we need to improve this solution to acquire less noise.
One possibility is to acquire more than just one sample as done in the case above, also because the
amplitude is changing at LF. For instance, let’s acquire five times the signal.

x(t) = Acos(2rf,t)

N = fn2T » 1

/\/\/\

x(t)

/\/\/\

\VAAVEAVALVARVARV RN

To take N samples
is equivalent to gate
a free-running sampler

w(t) = m(t) - r(0)

]

1]

[ 141
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To create the w_f made out of delta in the time domain. Which is the Fourier transform of a w_f made

of 5 deltas? It is difficult to say, so we derive

it.

We take a delta, whose Fourier is known, and a comb of delta, whose Fourier is still a comb of delta. So
we multiply the rect and the combo of delta in the time domain, hence convolution in the frequency

domain.
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We want the frequency domain because noise detection in the time domain is though, it would require
the autocorrelation computation, so it is much more easier in the frequency domain.

x(t) = Acos(@mft) X/
//\\ /\ \ //\\ ff% /ﬂ'\ r/\ f/\\\ T T
VVV V& o fm f
11147 A A
t -me ‘fm fm me f
oY) — [Rr/
I | fm LT | Afn:%
T w(r)-m?c)-rr(t) Tt rwmlzwl»lﬁrl f

C A, A

FILTERING: narrow bands at frequencies 0, f,, , 2fn, 3fm ...

So the upper right plot is the Fourier of the sinusoidal, then we have the comb of delta. The formula in
the blue box tells us that the distance between deltas in the frequency domain must be bigger than one
over two times half the amplitude of the rect. This because the convolution in the frequency domain is
not easy as in the time domain, since we need to consider the phase, but we can neglect the phase if one
signal is composed just by lines and the width of the other signal is much bigger than the distance between
two lines.

From the noise standpoint, we have WN and 1/f, and the 1/f can be neglected if we are after the
frequency corner.

The green parts are where we are acquiring the signal, and noise is acquired instead in the green, blue
and red regions. Compared with the ‘flat line’ of the previous case it is better, so we are acquiring less
noise, but we have a problem; we are acquiring the signal in the green and the noise in all the other colors
(just noise). But the real problem is not the blue, but the red.

In fact, we want to get rid of 1/f, but due to the red we are also collecting it, even if we are modulating
to get rid of it. So the problem is not the blue BW that gives us more white noise, but the 1/f.

‘tflm

|

T —

ypnase |

/{ white noise
f

» At f,, useful band: it collects the signal and some white noise around it
* atf=0 VERY HARMFUL band: it collects 1/f noise and no signal

* at2f,,3f,, ... harmful bands: they collect just white noise without any signal

To solve this issue, we need to resort to signal theory.
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DC suppression by summing positive peak and subtracting negative peak samples
' x(t)

1
/ [
A/ N !'\/'\!J[\‘
\/ Y
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To take 2N samples
is equivalent to gate
a free-running sampler

w(t) = m(t) - rp(t)

NB: equal number of
t positive and negative
samples (zero net area)

I~
-¥-----

R SEE L PR el

HEREE
TTT T T

We can try to use an approach similar to the correlated double sampling. We can create something like
x, with positive deltas and negative ones. So we acquire 5 positive and 5 negative deltas. Differently from
CDS that acquires baseline and signal, here we acquire 10 times the signal. As an advantage, we are not
acquiring the zero frequency, because if we have a constant value (0Hz), 5 positive minus 5 negative gives
0 in output.

Now the comb of delta is made out of positive and negative deltas. How can we create it? As below.

x(t) [/
’.‘/ \\\ / {\\\ / \\ / \\ ;f\\ / ! \,\\ ;/"\\ T T
7 f — *

v/ VOV fm fm f

EERRAREES I S S

PTTT T o e o

ret)

[ | 1.

-T w(t) = m(t) - rp(t) T t W) ~M=+Ry f
[TTTT o

FILTERING : narrow bands at f,, and at odd multiples 3f,,, 5f, ....

Which is the Fourier t.f. of positive and negative delta sampler?

We know the Fourier of the blue free sampler, then I do 1 — it, and shift in time. The nightmare is that
shifting in time deals with phase, which is a problem with a pen and paper approach (it would not be
with MATLAB).

We could take the one peak of the blue and one of the read as a single CDS and replicate it in time
domain, the problem is that still we are dealing with phase (replicating in time is sampling in the
frequency domain).

Following the idea that making the replica in the time domain is sampling in the frequency domain and
vice versa, we can say that a delta is a sample, so infinite positive and negative deltas are an infinite
number of samples, because the distance between the different delta is constant. So we are sampling
something a lot of time. Since the samples are constant, the signal we are sampling a cosinusoidal at two
times the frequency.
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The Fourier t.f. of the sampling in the time domain is the replica in the frequency domain. The Fourier
of the cosinusoidal are two deltas in the frequency domain; now we are sampling in the time domain at
two times the period, so we are replicating in the frequency domain. So we have fm and -fm, replicating
them. The difference is that Ofm, 2fm, 4fm and so on are missing, because we are ‘replicating’ at odd
multiples. So x is the sampling of a sinusoidal. Then the Fourier of the rect is the sinc and we move the
sinc on all the different replicas.

Sample averaging with DC suppression

e

A

b S

’jjfm ’Zf m

I
{-=-z-ooooyr

J

* atf, useful band that collects the signal and some white noise around it

No more band at f =0, no more collection of 1/f noise

* at3f,,5f,... residual harmful bands that collect just white noise without any signal:
how can we get rid also of them?

Every time we modify something we have to check that the original behavoiur of the filter is still there,
so in this case that we are still acquiring the signal. In our case it is ok (green).

We are acquiring also the white noise (green and blue) but not at 0Hz, so no 1/f. The problem is that we
are acquiring noise also at odd frequencies. Hence are we acquiring an infinite noise?

No, because at a certain point we will have a cutoff of the WN due to the LP filter or the preamplifier.

However, if we consider the replicas, theoretically the amplitude is doubled because we have two deltas
overlapped. But we are happy because we are acquired both the signal and the noise two times. Then,
when we normalize for the SNR, it is improved.

Continuous sinusoidal weighting
Further improvement. We want to match the w_f with the shape of the signal, hence creating a matched

filter. We can try to use the theory of the optimum filter, so we use exactly a piece of the signal to get the
deltas.

In the end I get the w_f x, which is a part of a cosinusoidal (signal truncated by the multiplication with

the rect). It is truncated because we want to check the signal for some time, not for an infinite time, in
case the amplitude is changing.
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Continuous sinusoidal weighting instead of peak sampling

x(t) = Acos(wpt) X[
AANNANAN [ 11
VARVARVARY -

m(t) = B cos(w,t)

AAAMNAAA [

\./ \\Jfr \\J/ \\/ \/ \Ulf t ’f m f m f
IRyl
r{t)
I | b
-T T
Wt = (D) mele) A [ Wl f
X /\ ﬂ/\\ /\\ A ‘ 5 | | . \ly
U \/ \/ \/ \/ \\J t _fm fm f
-T T

TRULY EFFICIENT FILTERING : just one narrow band at f,,

The final result is that we acquire the signal in the green BW, and also the noise, but we don’t have the
zero frequency noise and any other noise at other frequencies. So it seems we are acquiring a small BW
around fm, which is exactly our goal, a narrow BP filter. It seems that this solution solves all the problems
related to the BP filter.

Optimized noise filtering in synchronous measurement

1 [
dim f;n f
" W
| ]
A I

o Un o Zn Fm 1
g =
! j i
El 1 f

* atf, useful band that collects the signal and some white noise around it
* Nobandatf=0, no collection of 1/f noise

* No residual bands at 3f,,, 5f,, ... no more collection of white noise without any signal
How to implement this optimized synchronous measurement?

Which is the BW of this created BP filter?

Itis 2/T, where T is the observation time (width of the rect), so we are taking the first lobe of the sinc. So
the BW is related to the width of the rect, while fm is related to the signal, which is uncorrelated with T.
So we can change one or the other without having Q and BW of the BP filter related. So it seems we are
solving the issues of the BP filter, at least in the frequency domain. But how can we implement this filter.
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Filter implementation — synchronous measurement

Input Signal
x(t) = Acos(wpt) z(t) = x(t) - m(t) Ve o A
4 Anal
%%WQ”%% | Mur\]ta;[jiger Infeagtreacior [ DcOutput
A ~ .
Reference m(t) = B cos(w,t) T E\IB_: #ow-_Pa;s:lter |
with switched parameters
DAAAR 1. :
VVVVV T
Weighting in time domain Weighting in frequency domain
W)l = M xRy
w(t) = m(t) - r¢(6)
it i
GIC< /\ /\ /\ /\ Gl cut il -l M=
TV VUV VOV NT I fm f

* NB the reference input to the multiplier is a STANDARD waveform, which
absolutely does NOT depend on the signal: it is the same for any signal !!

« Therefore the set-up is a LINEAR filter (with time-variant parameters)
We take the modulated signal, the reference, and we multiply the signal and the reference. After that, we
apply a GI and we get the output.
Firstly, we need to check that we can do that. We need an analog multiplier to multiply the input signal
and the reference. Also the GI can be implemented at the output, because we have the sync. The output
will be the amplitude A.

Advantages

This linear time-variant filter composed by Analog Multiplier (Demodulator) and Gated
Integrator (Low-pass filter with switched-parameter) has a weighting function similar
to that of a tuned filter with constant-parameter, but has basic advantages over it:

* Center frequency f,,, and width Af, are independently set
* The center frequency is set by the reference m(t) and locked at the frequency f,,

* Incases where f,, has not a very stable value the filter band-center tracks it:
the signal is thus kept in the admission band even if the width Af, is very narrow.

* The width Af, = 1/2T is set by the G, it is the (bilateral) passband of the Gl

* Narrow 4f, and high quality factor Q can thus be easily obtained at any f,,,

fin
Afy < fm O=up 71

Now frequency and BW are totally independent, and the BW is just the width of a GI, so we can create
any BW, and so a huge Q.

However, there is still a problem. E.g., if we are interested in measuring the temperature, which is a
slowly changing function of time, with this filter we are multiplying the signal (which is modulated) with
the reference and then the GI because we have the sync. The GI is a NCPF, and the output of any NCPF
is a number. But I don’t want the temperature ‘now’ but its evolution in time, because I started from a
signal varying in time. So I would like a signal changing in time also at the output of the filter, otherwise
I have to sample every time the system.

How can we get the entire waveform? Lock-in amplifier.
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LOCK-IN AMPLIFIER

The idea is that still we take the signal and reference and we multiply them, but instead of using GI
(NCPF), we replace it with a RC, which is a CPF. We started with a GI because we needed a piece of
the sinusoidal function, and the GI has a rect w_f. Now we are modifying it hoping to have a continuous
output. but does it work?

We need to check if this solution is doing the same thing of the previous one.

With averaging performed by a gated integrator, the amplitude A can be L]
measured only at discrete times (spaced by at least the averaging time 2T ). @'\r‘i@_fﬂ/
However, by employing a constant-parameter low-pass filter instead of the Gl,
continuous monitoring of the slowly varying amplitude A(t) is obtained.

Fe————mmemm——m e — =
|
Input signal : z(t) = x(t) - m(t) Constant-pa_ram. I
x() = A cos(wnt) b \ Low-Pass Filter : ys < A
A ;#: _ : Analog \"’1 F“ I A—
1 Multiplier - e : - N asi-DC
Ref 1 3 Tp=RC [ I q -
eference I = | Output signal
m(t) = B cos(wy,t) I - - |
AAAAN : we(a) LPF weighting f. |
\ J ‘\ Jfl "U'I \J "\ uf o mm mm e omm omm oEm e Em e Em Em e e Em oEm Em Em e e !

The constant parameter LPF performs a running average of the output z(t) of the
demodulator. The output is continously updated and tracks the slowly varying
amplitude A(t). This basic set-up is denoted Phase-Sensitive Detector (PSD) and is the
core of the instrument currently called Lock-in Amplifier.

Weighting function
Z(t) 1s signal times the reference, and then we have a LP filter, so the output is z(t) times the w_f of the
LP filter.

i S g
1
Input signal : z(t) = x(t) - m(t) Constant-pa.ram. |
x(t) = A cos(wmt) | Low-Pass Filter : ¥ 5
RN R TR el M N
1 Multiplier - [ C : - A
Reference : mem 1 1 quasi-DC
m(t) = B cos(wpt) I 1 Output signal
NN R I we(a) LPF weighting f.
ANNNN 1 7
VVVVV o ———

The constant parameter LPF performs a running average of z(t) over a few T,
that continously updates the output

3

o= 2@ we(@da = || *@m@we(@ia
By comparison with the definition of the LIA weighting function w,(a)
yo = [ " wye)da
we see how the demodulat(i)on and LPF are combined in the LIA

|wL(a) = m(a) - wp(a) | = [ wr=mi-

The output of any filter (CPF or NCPF) is the integral of signal times w_f, in the time domain. If we
compare the two equations, we get that the w_f of the lock-in is the multiplication of reference times w_f
of the LP filter.

Let’s move to the frequency domain.
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Frequency domain
In the time domain we are multiplying the reference and the w_f of the LP filter, so the last plot on the
left is the w_f in the time domain.

x(t) = Acos(wpt) A [ X/
A A
AN NN AN ZT T :
VVVV VIV i o fo f

\ [M]

m(t) = B cos(wpt)

AANNNN N E
VAAVEVEAVAVAAVAN: Fm fo f

1
LPF weighting function wg ;P F ;”’;:h 8%, = Vel = Gy
anawi i ZT
(bilateral)
t
w.(NI f
wi(a) =m(a) -wpla) »  geemgmeeomopeooes 1
B >le —
""""""""" awAWAW/ ET }\ ]\ 2
" MLALN VARV o fm f
t WL(NI = M|+ |Wel

The w_f of the LP filter in the frequency domain is the Lorentzian spectrum. So the situation is as before
with the GI, but instead of a sinc we have the Lorentzian spectrum. The BW is not related to the width
of the rect (we don’t have it anymore) but to the RC of the LP filter, and the central frequency is still fm.
So we have the same advantages as before and no disadvantage, with the difference that the output now
is a function, and not just a number.

SNR of the lock-in amplifier

Input Signal (in phase) IX]
x(t) = Acos(2mfp,t) é T T é
2 2
o ' f
T e
I B\? afy =L Bilateral noise
Weighting (E) I A — 2Tr | pandwidth of the LPF
'fm fm f
Sop 1/f noise

Noise density (bilateral)

[
1 1}
' 1
1
! '
1
" ]
' ]
1
I 1
I l
i |
"
N U T . .
Sy = Spp + 2221 ; : white noise
f ] '
! L
. T
I 1
I 1
I 1

$ Seb

3] [N

B
2

ro| &
T

Outputsignal  ys=2

(5) _ Y _ A
2 2 = W, iz V2Sebha
V.

. = _ (8 B
Qutput Noise nyL=2(5) " Spp Afn:_ Spp " Afn

Signal is signal times the w_f, so 2*A/2*B/2 (w_f, not w_{"2 for the noise).
For the noise we need to take the absolute value squared for the w_f. In the image we have the bilateral
spectral density.
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or in power terms

S$y? > B in — phase signal power
( )L T Sppfy " halfpower ofwhite noise in the band Af;,

S/N equation in terms of the unilateral parameters
By introducing
* fg, the LPF unilateral bandwidth (upper band-limit for noise), i.e. Afy = 2fpn
+ 5., the unilateral noise density, i.e.  25py = Sgu

we can write

N A
(), = VZSoufen

DC signal with LPF compared to AC signal with LIA

Let’s resort back to the original problem, where we wanted to measure the temperature and we had the
1/f. Let’s make a comparison applying everything as the beginning but with a constant value for the
bridge, not sinusoidally modulated.

DC voltage supply \bxm =4
Va J + — LPF
VAC Out
V‘Y‘" J_ >
R
Lc

Tp = RC
Let us consider the set-up of the key example (measurement with resistive sensor)
now with DC supply voltage V, equal to the amplitude of the previous AC supply.

The signal now is a DC voltage equal to the amplitude A of the previous AC signal.

With a LPF equal to that employed in the previous LIA we obtain:

Output signal ~ yc=4 (2) _Ye A4
Output Noise ¢ = Snu " frn ¢ n2c VSnufrn
(Sn. mean density in the LPF band)

This S/N may look better by the factor v/2 than the S/N obtained with the LIA,
but is this conclusion true?
NO, such a conclusion is grossly wrong because S,,,, > Sg, !!

The signal is A, constant or very slowly varying in frequency. The noise is spectral density times ENBW,
and we know the ENBW of the LP filter. Now we consider just the spectral density as the mean density
in the LP filter band. We don’t have delta(f) because we start from 0, so delta(f) = f Fn.

We can set the RC with the same tau of the LIA.

It seems that we have a higher SNR without the LIA, because with LIA it’s sqrt(2)/2 (like if we were
doubling the noise). So what are we missing?

We are not doubling the noise with the LIA and the LP filter solution is worse than the LIA because the
spectral density Snu_hat is not the same, since the LP filter BW is in the middle of 1/f, while in the LIA
the spectral density was including jus the WN, not the 1/f noise.
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So with just the LP filter we have the component around 0 (red), collecting the 1/f noise exactly when
it’s higher. Just the LP filter is not enough because we are sampling the 1/f in zero, so we need to add a
LPF, so all the reasoning related to eventually CDS or baseline restorer (all the problems already seen for
the 1/f noise).

DC Input Signal (Pl =4-8()
x=4

fm IWF/Z fon "
T |
Weighting of the LPF ; 1] _7(_ |

I B ;

S .
Noise density (bilateral) nb

i i
| i
! :
San; ! : ite noi
Sup = Sap + E}Jrfc : j K : white noise

1 Seb

' f
S,.» Mean spectral density Spp, Spectral density

in the LPF band at f=0 in the LIA band at f = f,,

A passband at f = 0 is a risk: 1/f noise gives S,,;, > Sy, !

Fake LIA passbands arise from imperfect modulation

LIA implementation in the real world is not easy, especially when we have to create the analog multiplier.
One of the problem with the analog amplifier are issues related to noise and dynamic ranges.
Furthermore, it adds distortion to the signal, so ‘adding lines’. If we are adding lines to the reference due
to distortion we are adding BW where we are collecting noise. If this BW is in zero, we are collecting 1/f
noise.

So normally we have a small DC value because we are not able to create a perfect reference.

* Ideally, the reference waveform should be a perfect sinusoid at frequency f,, with
amplitude B,

* In reality, deviations from the ideal can generate spurious harmonics at multiples
ki, (k=0,1,2..)with amplitudes B, (small B, << B, in case of small deviations)

* Moreover, effects equivalent to an imperfect reference waveform can be caused by
non-ideal operation (non-linearity) of the multiplier

* Sinceitis (W (F) = M(f) = We(f)

each spurious harmonic component of M(f) adds to the LIA weighting function W,
a spurious passband at frequency kf,,, with amplitude B, and shape given by the LPF

* A fake passband at f = 0 is particularly detrimental even with small B, << B,
because it covers the high spectral density of 1/f noise ....

* ... and unluckily any deviation from perfect balance of positive and negative areas
of the reference produces a DC component with associated passband at f=0!!

If we have a small line in 0, e.g. due to a small offset in the reference, we are opening a BW with small
amplitude collecting some noise.
But we aren’t necessarily damaging our work. We need to compare the noise x with the one of the signal,
y. It depends on the value of BO.
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Bo - 6(F) T 700

Imperfect reference
with DC component

f Iw?  t Im f
LIA weighting function ; (ﬂ)z
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'fm S i fm f
Noise density (bilateral) b i
Snp = Spp + Swie j \ i
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The ratio S,,“/SB” > fi./ [y, 1 can match or exceed the amplitude ratio ZT;Z

0
so that the noise in the fake passband 710 =B; -S,, A, = B3-S, [, X

= _B . Bt .,
can equal or exceed that in the correct passband ni = = Sep A= Spu frn y

From the theoretical point of view, the Lock-in is perfect because B0 doesn’t exist. The problem is that a
perfect cosinusoidal doesn’t exist, as well as a perfect amplifier.
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LOCK-IN AMPLIFIER

In principle with the LIA we can obtain a high SNR also when the SNR at the beginning is very small.
The problems are the non-idealities of the real implementation of the filter.

In principle:
a LIA consisting simply in a Phase-Sensitive Detector provides a flexible and effective
band-pass filtering that can achieve very narrow bandwidth. It is thus able to recover

for measurement with good precision even very small modulated signals buried in
much higher noise, down to an ideal limit value S/N<<1

But in practice:

the non-ideal features of the actual circuits of the PSD set to the recovery of small
signals buried in high noise an actual limit much more stringent than the ideal one.

However:

by introducing in the LIA structure modifications and further stages, the hindering
features can be counteracted and the actual detection limit can be improved towards
the ideal limit. For instance, in real cases nanoVolt signals can be extracted from
wideband noise with 1000 times (60dB) greater rms value.

Principles
The problem is not the gain of the filter, but of the multiplier.

High gain for the signal

The modulated input signal is converted by the LIA in a slow demodulated signal, with
components from DC to a fairly low frequency limit. This signal must be supplied to a
meter circuit that measures its amplitude, i.e. nowadays ordinarily an ADC. The LIA
output signal must have scale adequate for the ADC (typically 10V full scale), whereas
the LIA input signal is very small: therefore, the LIA must provide high overall gain for
the signal.

Post-Amplifier (after the PSD)

A high-gain amplifier after the PSD (denoted here Post-Amplifier) is employed to raise
the demodulated signal to a scale suitable for the ADC.
Notice that the post-amplifier:

1. must be a DC-coupled amplifier with upper bandlimit adequate to the
demodulated signal

2. receives a signal accompanied by low noise, since it operates after the PSD
filtering

3. It has drift of the baseline offset and low-frequency noise, which affect the
measurement since they occur after the PSD and are not filtered

If the amplifier has a drift or offset, we pay all the 1/f of the amplifier. So using a post-amplifier just to
increase the gain doesn’t work. So maybe better to use a pre-amplifier.
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Pre-Amplifier (before the PSD)

If the demodulated signal is very small, comparable or lower than the baseline drift and
noise of the post-amplifier referred to its input, the measurement will be spoiled. A
preamplifier before the PSD is necessary in order to avoid or reduce this drawback.

Notice that the pre-amplifier:

1. processes the modulated input signals, hence it is an AC coupled amplifier, either
wide-band type including the modulation frequency f,, or narrow-band tuned to f,,

2. receives a signal accompanied by high noise, because it operates before the PSD
may have baseline drift and low-frequency noise, but their role is minor because
they are filtered by the PSD (and by the AC-coupled amplifier itself).

WARNING: Signal and Noise MUST stay within the Linear Dynamic Range

In order to obtain the foreseen improvement of $/N, the processing of signal and noise
in the LIA must be accurately linear. Deviations from linearity produce detrimental
effects (self-modulation of the noise, generation of spurious harmonics, etc.), which
irrevocably alter the measure and degrade the LIA performance. The signal and noise
must remain well within the linear dynamic range in every stage involved, particularly
in the multiplier (and in the preamplifier).

If the signal is larger, the output will also be larger, so I amplify at the input. I'm amplifying both the
signal and the noise, so SNR is not touched, I'm just changing the amplitudes. The BW of the amplifier
must be large (AC coupled).

Moreover, the preamp can have drift or 1/f, because it is then removed by the LIA. The only thing is that
the preamp must be AC coupled, so it must include fm, frequency with which we modulate the signal.

Fm is typically higher than the frequency corner, which is normally in the range 1k — 10 kHz, so greater
than 1 MHz. The problem is that signal and noise must stay between the linear dynamic range of the
multiplier. If we exit it, we create distortion or clamp the signal.

With the preamp we are multiplying the signal and noise, signal is nV, but completely covered by noise,
so if we move the signal to mV, we are moving the noise to V and the noise could be out of the dynamic
range, while the signal is. As soon as we exit the dynamic range, the multiplier starts to distort everything.

So we cannot amplify at the output of the LIA nor at the input. So either we create an amplifier and
multiplier with large dynamic range, or we change perspective.

The idea is to make something meaningless from the theory point of view. I use a preamp, which acts
both on signal and noise, so the solution is to use a resonant filter RLC. We are not replacing the LIA
with a resonant filter, we are adding it. The BW of the RLC is very large, while the one of the LIA is
narrow, and the two are in series. But the idea is not to use the RLC to improve the SNR, but as a pre-
filter.

We take the signal, we use a rough pre-filter with a large BW, but not so large as the input, so we cut

some noise and then at this point the preamp will amplify the signal and the cut noise, and they will
hopefully remain in the dynamic range of the analog multiplier.
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Wide-Band Preamplifiers and Tuned Preamplifiers

When a wide-band preamplifier is employed to raise the level of a very small
input signal, a problem arises with very small input S/N<<1. The gain required for
the signal works on a noise which is much higher than the signal, hence it brings
this amplified noise out of the linear dynamic range of the multiplier.

In such cases, for exploiting the required gain it is necessary to reduce the noise
received by the preamplifier with a pre-filter. Adequate reduction of the LIA input
noise is obtained in many cases with prefilter passband much wider than that of
the LIA.

Such a prefiltering would be a useless nonsense in an ideal apparatus, but in real
cases it is a necessary feature for avoiding nonlinearity in intermediate stages. On
the other hand, we will see that a very narrow-band prefilter is not advisable.

Preamplifiers that incorporate prefiltering are currently available from LIA
manufacturers; they are called tuned preamplifiers or selective preamplifiers.

Another possibility is to remove the analog multiplier.

Linearity limits and problems

The multiplier dynamic range (linear behavior range) does not depend on the gain
setting of the preamplifier, it is set just by the multiplier circuit.

The preamplifier output dynamic range is constant, independent of gain setting.

Therefore, there is a maximum acceptable input signal that must not be exceeded
for maintaining linear behavior of preamplifier and multiplier; increasing the
preamplifier gain by a factor decreases this limit by the same factor

There is also a maximum input rms noise that can be applied maintaining linear
behavior; an increase of preamp gain decreases also this limit.

Also the post-amplifier has limited linear range, but problems met are much less
severe. In fact, the post-amp receives low-level noise (filtered noise), whereas
preamp and multiplier process high-level noise (not filtered or just prefiltered)

Each setting of preamplifier and post-amplifier gains determines an input full-scale
signal, i.e an input signal level that produces full-scale LIA output signal.

Note, however, that a given value of input full-scale signal can be obtained with
different combinations of preamp gain and post-amp gain

Elimination of the analog multiplier

The idea is that we have to multiply the signal and the reference, but it doesn’t necessarily require an
analog multiplier. If the reference is not sinusoidal, we can use two amplifiers and a switch.

At this point we don’t have any problem about the dynamic range, because we removed the analog
multiplier, but we have to be sure that the new solution works as the original LIA.

So we have to study the LIA, but with a square wave reference.
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Switched Amplifier Circuits instead of Analog Multipliers

We have seen that modulation with squarewave reference m(t) can be
implemented with circuits based simply on switches and amplifiers, avoiding
recourse to analog multipliers

| B z(t)=B-x(t)-m(t)

x(t)

m(t) *
I_II_II_II_II‘/ L
Uy ¢

The noise referred to the input, the linearity and the dynamic range of these circuits are
remarkably better than those of analog multiplier circuits (even high-performance
types) because they are limited just by the performance of amplifiers and switch-devices.

Therefore, switched linear circuit configurations are often employed as demodulator
stage in LIAs in order to avoid the limitations of analog multipliers.

The w_f of the LIA is the product of the w_f of the LP filter and the reference, but the reference doesn’t
have to be sinusoidal (convolution in the frequency domain still retrieves the considerations previously
done on the phase). With one amplifier and we switch the inputs, we are sure that positive and negative
values are the same, since the amplifier is the same. This is an advantage since we can kill the offset.

The weighting function w,(e) of a LIA is the multiplication of reference waveform m(c)
(periodic at frequency f,, ) and weighting function wg(a) of the LPF

w, (a)=m(a) w ()

In frequency domain this corresponds to the convolution of the F-transforms

Since: WL(f):M(f)*WF(f)

a) the transform M(f) of a periodic m{a) is composed by lines at f,, (fundamental)
and integer multiple frequencies (harmonics)
b) W(f) of the LPF has bandwidth much smaller than f,,

the result of the convolution of W(f) by any line of M(f) does not overlap the result
by any other line (with very good approximation). We conclude that:

the W(f) is a set of replicas of W{f) centered on each line of M(f), multiplied by
the line-weight and phase-shifted by the line-phase.

With very good approximation, the module diagram can thus be obtained simply as

7, ()| = |M|* |

The new reference is a square waveform.
Square waveform reference

Its Fourier t.f. is made by lines whose distance is much larger than the BW of the LP filter, so we can
apply the simplified convolution disregarding the phase.
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mMg,(t) = symmetrical squarewave (from +1 to-1) at frequency f,,
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* Components with alternately positive and negative sign, i.e. alternately 0 and t phase
* Component amplitude decreasing as the reciprocal order:
2 1 1
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Good things about a square wave reference:

- Reference composed by lines, so easy to make the convolution.

- It doesn’t have the delta at zero frequency.
To create a small delta in 0Hz, we can create a mismatch between the positive and negative amplitude,
or we can use a duty cycle that is not 50%. So, since these things hardly happen, this square waveform is
a good candidate for being the reference.

The drawback is that we have more noise, replicas at odd fm multiples where we acquire the noise. So
we are acquiring more noise than the one required. More than that, thanks to these replicas we will be
able to get a SNR higher than the SNR obtained with a sinusoidal reference.

Recap

The problem is always the 1/f noise; CDS or CR are useful for the 1/f, but if 1/f is too high we have a
problem. However, it is possible to modulate the signal outside the 1/f, meaning at a frequency higher
than the frequency corner fc. Not at too high frequencies because we could have problems with the
amplifier. If we have available a BP filter, we would be happy if the signal is not in the middle of 1/f as
a central frequency.

The 1/fis infinite at 0 frequency, so if we collect something at 0Hz we are in trouble. So we add positive
and negative deltas to acquire more times the signal (10 times instead of 5), but at the same time to remove
the zero frequency.

Starting from this idea, we have some problems. In fact, if we compute the SNR, we find a factor 2 in the
lower part of the ratio, so it seems that we are collecting twice the noise. Indeed, we have a factor 2 on
the noise, but we are doubling only the WN, while without the LIA we are not doubling it, but we are
also not doubling the 1/f with LIA.

The second problem was that, in order to create the LIA, we need an analog multiplier, which is a
nightmare, since it might add distortion. As soon as we make a distortion, we are also distorting the
reference and we are adding lines in the spectrum, so also collecting noise from these lines.

So the idea, since the analog multiplier is a problem, is to make the same ‘job’ with a square wave
reference, because in all the formulas there is no reference on the shape of the reference.

Using a square waveform allows us to avoid the multiplier. In fact, multiplying by a square waveform
means multiplying by B or -B, so we need just a couple of amplifiers and a switch.
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Fourier transform of a real square wave
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BEWARE: In cases where the squarewave has non-zero mean value (e.g. slight asymmetry

in amplitude and/or duration of positive and negative lobes) it has also a DC component

with amplitude b, given by the ratio of the mean value to the peak amplitude (i.e. by the

relative unbalance of positive and negative area)
We can notice that we are collecting more noise than required, fm, 3*fm, 5*fm, ..., but also more signal.
If we have a small offset, we might have a problem that depends on how much is big the delta at 0Hz.

If we compare it with the sinusoidal reference, it seems that we are collecting more noise. Hence for sure
we will obtain a lower SNR with this reference than with the sinusoidal one. The bandwidth is exactly
the same, because we are using the same LP filter, but with the sinusoidal we were collecting noise only
on fm and -fm.

Let’s compute the SNR in this case and if it is possible to make a workaround.

Frequency domain
The w_f definition tells us that we compute the modulus and we make the integral from -inf to +inf of
the Fourier of the signal times the Fourier of the w_f{ calculated in -f.

Time domain
We are making the product of a cosinusoidal times the square waveform, which is between -B and +B,
so we will have B*A, and then the LP filter makes the average. We get (2/pi) * B*A.
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Every time we have a line, we collect a BW of delta(f) of WN, we don’t have 1/f. Then we have to sum
all the values at all the lines.

S, f Snb 1/f noise
Input noise S, = Sy + =2 T
")
i 0 | : | i f
_Efmi _3fmi _frn fm :3fm ! 5fm

| < 4f, 1
i O, ‘%G—Af . 3 /\

- = , AP (2 Y 11
Output Noise ny :,[_,Su/,(.f)\Wp, ()| di":2'SmA.f,,(;BJ [1*'3—2*'5—;*""}

The factor []"'(1/3)2 + (1/5)2 +} =8 5(1111)2 represents the enhanced noise
due also to the higher passbands at the harmonic frequencies
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No signal is collected in these passbands. Therefore, the S/N is reduced with respect
to the case of sinusoidal reference, but the reduction is moderate.

SNR WITH SINUSOIDAL SIGNAL AND PERFECT SQUAREWAVE REFERENCE

2
Output Signal Sy = ;B A (for sinusoidal input signal in phase)
Output Noise n, =S, N B*

v

(i) I S
Nisan \JE %\SBbAfu

which in comparison to the result obtained with sinusoidal reference

S] 4
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is just moderately lower
s
N L.sin
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N Lsqw LINNN Lsin

We will now deal with another case often met in practice: the signal to be
measured is a squarewave in phase with the squarewave reference

so that

1

o] &

We can see that the SNR is a factor 1.11 lower than in the case of a sinusoidal waveform. It is not strange
because we are more noise.

So there is a trade off here. On one side I don’t have to use an analog multiplier, on the other side I'm
reducing the SNR. How can we get high SNR?

This solution is perfect from the cost and real implementation standpoints, but we are paying SNR
because the problem is that we are collecting, together with the signal, also the noise where there is no
signal. So signal two times and noise an infinite number of times.

The first solution was to remove the BW where there is no signal, so we are collecting noise where the
signal is, but if we don’t want to remove the BW where there is no signal, we have to see if it is possible
to put the signal where we collect the noise.
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Instead of a sinusoidal we use a square wave signal.

LIA WITH SQUAREWAEYV SIGNAL AND REFERENCE
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NB1: This is easily verified in time, since: LIA output y(t) = time average of z(t)=x(t)-B m(t)
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NB2: As concerns the output noise, it has already been discussed

The signal has now a known shape, exactly the same shape of the reference, with a value A. We want to
assess the SNR.

For the signal is the integral from -inf to +inf of Fourier t.f. of the signal times the w_f calculated at -f,
according to the image above.

As for the noise, it is the same as before, since the reference tells us where we are collecting the noise and
it is still a square wave.

Putting all together we have the following.

Output Signal s, = B-A for squarewave input signal in phase
Output Noise nﬁL :SBhA.f;rBz
so that [EJ = L A4

N Lsqw i’tl SBF)Af;x

L

However, for equal amplitude A the squarewave signal has double power and
correspondingly higher S/N

It is the SNR we got using a non-modulated signal but with a spectral density that is only the one of the
WN, without 1/f, removing also the factor 2.

So it seems that this solution is better than the LIA with a sinusoidal reference and signal. It seems
impossible to get this result.
Delta(f) is the BW of the LP filter I’m using, which depends on the real signal before the modulation,
soit’s a data. Sb is the spectral density of the WN (with a sinusoidal we have a factor 2). A is the amplitude
of the signal we want to obtain, the information we want to get. A modulated signal with amplitude A
has a power A”*2/2, which is half the power A"2 of a constant value signal before the modulation.
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So if we change the way in which we modulate the signal from waveform to sinusoidal without touching
the power, we are loosing in SNR. But if we are limited by the power dissipated by the sensor, if we use
a square waveform the power is A2, but in the sinusoidal is A"2/2, so we can double the power supply
and dissipate the same. If we dissipate the same power we have exactly the same SNR.

NOISE THROUGH LIA WITH IMPERFECT SQUAREWAVE REFERENCE

Sy 1/f noise
Input noise S, =8+ Sw Jc b -
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A squarewave with non-zero-mean generates a spurious band at f=0 with additional noise
ni”, = ;,Af, ,Bzhé

Because of the 1/f noise, the mean density S,,;, in the band can be very high S,,, > Sg),

so that even with small spurious band by<<1 the added noise % can be comparable to

2

the basic term ny

1, Or even larger

Let’s suppose we have a light signal that we modulate on-off. Do we still have the delta at 0Hz?

The average of the signal is 50%. So there is the b0 or not? b0 is the DC component of the w_f. In the
time domain, the w_f of the LIA is the reference signal times the LP filter. The LP gives us the BW, the
line is fixed by the reference, so b0 is in the reference if I have it.

In our application, the reference is something that gives us the sync with the signal. If the signal has 1/0,
the reference can be 1/-1, since we are interested in the synchronization. In our case is not important the
DC component of the signal, because the signal doesn’t collect any BW on the noise, it is the w_f that
has to avoid the DC component.

So with a light source I modulate a laser with a sinusoidal waveform placing an offset and then over the

offset I modulate, because we cannot have negative light. Offset is not a problem if the same sinusoidal
is used as a reference but with no offset. It is the reference that must have no offset.
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Summary and comparison

SINUSOIDAL SQUAREWAVE
Reference Reference
SINUSOIDAL Signal S A VP S A
R —_= = ST ——
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REFERENCE PHASE ADJUSTMENT

In order to be useful as reference for measuring with a LIA a given periodic signal, the

essential necessary features of an auxiliary signal are:

1) fundamental frequency identical to the signal

2) constant phase difference ¢ with respect to the signal.
(NB: not necessarily ¢=0, but it is necessary that ¢ = constant !)

If the auxiliary signal has high and constant amplitude, negligible noise and clean
waveform (free from harmonics), it can be directly adjusted to @=0 with a phase-
shifter filter and supplied to the multiplier as reference waveform.

* An adjustable phase-shifter is currently included in LIAs for re-phasing the
reference. The phase adjustment can be controlled manually by observing the
output signal amplitude, which is maximum when ¢=0.

* Many LIA’s besides the adjustable phase shifter include an additional filter, which
gives phase shift ¢, switchable from ¢,=1/2 to ¢,=0. Setting ¢,=1/2, when ¢=0is
reached the signal is in quadrature and the output is zero. Notice that observing
the output signal while @ is varied it is easier to identify when it reaches zero
rather than when it reaches the maximum. After the adjustment to ¢=0, the
additional filter is switched back to ¢,=0 and the LIA is ready to operate.

A cosinusoidal has a frequency and a phase. Normally we use the phase = 0 because the important thing
is that it remains constant, otherwise we are changing the modulation.

By exploiting the a well known trigonometric equation
1 1
cosacosff = Ecos(a -B) +Ecos(a +5)

in cases with sinusoidal signal and sinusoidal reference

x(t) = Acos(2nfst)

m(t) = B cos(2mfint + @m)

the result is directly obtained, since f¢= f;,

AB, AB
y() =x(t) -m(t) = 7(C°Sl$1nj ) 7(305[2“(2&” + oml
N—
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PHOTONS

SPECTRAL RANGES

Changing the sensor we might change the signal we receive and the work to be done from the signal
recovery standpoint. We want to understand the performances of light sensors.

As for light, we are interested in the speed of light c. The near infrared range is of interest because of the
sensor; at this moment, the best sensors are developed in the visible range, because still dominated by the
silicon technology.

* Light = electromagnetic waves with frequency v and wavelength A
propagation speed (in vacuum) ¢ =2,998- 108 m/s

A <400nm Ultraviolet (UV)

* Spectral ranges:

400nm <A < 750nm Visible (VIS)
750nm <A <3 um Near-infrared (NIR)
3um<A<30um Mid-infrared (MIR)

30um<A Far-infrared (FIR)

PHOTON ENERGY AND MOMENTUM

We want to detect the energy associated to a single photon, this is the signal we are interested about. We
move from the energy in Joule to the electron voltage, which is the voltage which, multiplied by the
charge of the electron, gives us the energy.

Photon: quantum of electromagnetic energy

E,=hv quantum energy ( Planck’s constant h=7,6 103 J:s)

Rather than E, in Joules, the electron-voltage V,, is employed:

E,=qV, (electron charge q = 1,602 10 ¢ V, in Volts or electron-Volts eV)

_hcl

from E, = gV, we get W, = ?I

universal constant hc/q =1,2398 10 ¢ m-V =~ 1,24 um-V

1,24
X _ ’ . . .
V, = - with V, in Volts and A in um
400nm < A <750nm VIS range 3,10eV > Vp > 1,65eV

750nm < A <3um NIR range 1,65eV >V,> 0,41eV

The eV gives us information about the sensors we can use. In the case of silicon, the gap of energy is 1.12
eV; if we know that 1.1 eV is the gap of silicon, we can detect photons only if its energy is higher than
1.1 eV. Formula x is the one to remember.
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In the visible range we don’t have problem with silicon, while in the near infrared we can detect photons
up to 1.1 um of wavelength. So we stop in the visible range as field of interest because we want not only
to detect photons, but also to detect them with high efficiency.

REFLECTION AND ABSORPTION OF PHOTONS

We want to create an electrical signal from light. The first problem, often neglected, is the absorption of
light. Indeed, the light has to arrive inside the sensor, and it could be reflected on the surface. The
reflective index of air is 1, but of any other material is not 1, and if the reflective index changes, at the
interface we have reflection. If light is reflected, there is no way to absorb it.

To solve this, we can use an anti-reflection coating, modulating the reflection index in a smooth way to
avoid the reflection. It is very important and it must be chosen carefully depending on the application,
otherwise we could waste 20-30% of the light.

Incident P
b % ,,,,,,I,',),,Commg power in the material Py =P, - Py
Reflected | |, ~272
<~ P, T0
' - X
Air Semiconductor (or other material)

At the surface strong discontinuity of the refraction index n, from n = 1 for airto n >1
for semiconductor: e.g. for silicon it is about n = 3,4 and depends on the wavelength.
This discontinuity gives a high reflection coefficient R

P

=5 (e.g. for silicon R > 0,4 wavelength dependent )
1

R

Anti-reflection coating: deposition on the reflecting surface of a sequence of thin
dielectric material layers with progressively decreasing n value. It provides a gradual
decrease of the n value from semiconductor to air and such a smoother transition
reduces the reflection
Absorption of photons
What happens inside the detector?
If the light is not so high from the power point of view, the absorption is quite linear (moderate or low
PY).

Incident P,
AN Pro=(1—-R)P,
aYAYr 4
[aVAVad

P, absorbed
Reflected Py P transmitted
A ava¥ae
R RN g

Air Semiconductor

For moderate or low P;the absorption in dx is proportional to P; (linear optic effect)

o = optical absorption coefficient

dx
—dPy = aPrdx = Py . L, = 1/a = optical absorption depth

a
The optical power transmitted to position x is

X
Pr = Prg exp(—ax) = Prgexp (7L—)
a
The optical power absorbed from 0 to x is
Py = Ppo — Pr = Pro(1 —e™*)

X
= Prol1—e Ta)
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Alpha is the optical absorption coefficient, L is the optical absorption length = alpha = 1/L.

If we solve the equation, we get the classical exponential, and L gives us the tau of the exponential. L
depends on the wavelength, so on the application in our case. Our goal is to absorb all the light. If the
wavelength is big, we have to increase L; however, thermal generation is proportional to the length, so if
we increase the dimensions we are also increasing the noise.

For a given material the optical absorption STRONGLY depends on the WAVELENGTH.
Typical example: Silicon absorption coefficient

a Absorption Coelfficient of Silicon , undoped crystal
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The problem, looking at the graph, is that alpha changes from 10"7 to 10"-8, it is a huge change. We can
take another graph that is the same but flipped, so it is the absorption length L.

For a given material the optical absorption STRONGLY depends on the WAVELENGTH.

Typical example: Silicon absorption depth

L, =1/a Absorption depth in Silicon, undoped crystal
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NB: over the visible range L, varies with A by two orders of magnitude!!

1/alpha is the absorption length of the exponential decay time; if we want to absorb all the light we need
4 to 5 tau, so we can retrieve the thickness of the detector to collect all the light. The important values are
400 nm, the starting point of the visible range and blue light (corresponding to L = 0.1 um), 5 nm, which
is the green (1 um of L), 800 nm, which corresponds to 10 um of L.
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THERMAL PHOTODETECTOR PRINCIPLES

* A principle for detection of light signals is to employ their energy simply for heating a
target and measure its temperature rise AT . Detectors relying on this principle are

called «Thermal Photodetectors» or «Power Detectors»

* Main advantage: very wide spectral range. Since photons just have to be absorbed for

contributing to the detection, the range can be extended far into the infrared.

* Main drawback: sensitivity is inherently poor, because a high number of absorbed
photons is required for producing even small variations of temperature AT in tiny target.
For instance: :1015 blue photons are required for heating by AT=0,1 K a water droplet
of = Imm diameter (blue photons at A=475nm have V, = 2,6 eV; water has specific heat capacity

cr = 4186 [l/Kg-K]= 2,6 -10?? [eV//Kg-K] and the mass is 1mg)

* The dynamic response is inherently slow, because thermal transients are slow. Thermal

detectors are mainly suitable for measurement of steady radiation.

We have to understand how from the absorption of light we can generate a signal and which is the signal
we generate. The first sensor we use is the thermal photodetector, which is no more used nowadays.
Light has some power, which creates an increase of temperature in the material absorbing the light. The
idea is to measure the increase in temperature. All the light can contribute to the increase of temperature,
doesn’t matter if visible or infrared light, all can change the temperature. So with this detector we can
detect any kind of light.

The problem is that, to maximize the change in temperature, we need to reduce the amount of material;
even with a small amount of material, we need a lot of photons to change the temperature of 0.1°C.
Nevertheless, the sensitivity is not the most important problem.

Principle of thermal photo-detector

We measure the temperature of the material with respect to the ambient temperature (heat sink). In the
middle we have a thermal resistance.

P, = optical power; n,=photon rate
Bp=mnp-Ep=np-ql

Absorber Absorber:
E|e_Ct“C3| variable temp. T, T, = temperature, C,= heat capacitance
Signal C,=c,-m,
Vp «—— Temperature (m, = mass; c, = specific heat capacitance)
sensor

Thermal re5|stance

(Kelvin deg/Watt ) Denoting for simplicity T=T,- T,

the detector energy balance is

Py = thermal analog to Ohm law V = R/
power flow
—_=

Heat sink T
or thermal mass Ppdt = CodT +R_Tdt
with constant temp. T,
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T
From the energy balance Pydt = CodT + —dt

Ry
dT P T . B, T
weget o= C_ai RyC, and in Laplace transform  sT = C_u - RrC,
The detector transfer function from optical power to measured temperature thus is
1
X\ T=hRr ke,

* The steady state response (the steady T = P,R; obtained with steady P, )
increases as the thermal resistance Ry is increased

* The dynamic response is a single-pole low-pass filter with characteristic time constant
T, = R7C, : as Rris increased, the bandlimit fr=1/2m R;C, is decreased

*  For improving the high-frequency response without reducing the steady response it is
necessary to reduce the heat capacitance C, = c, - m, . This implies that
a) absorber materials with small specific heat capacitance c, are required
b) the absorber mass m, should be minimized.

* Remarkable progress has been indeed achieved in thermal detectors with modern
technologies of miniaturization and integration (of absorber, temperature sensor,
etc.) that make possible to fabricate also multipixel arrays of thermal detectors

The formula x is a LP filter, and this is the real problem of this filter, since it acts on light as a LP filter.
The only way to speed up this sensor is to reduce the capacitance, so to reduce the mass; but if so, we
need to find a temperature sensor able to read a small amount of temperature. Nowadays, the speed of
the sensor is very important as well as the SNR.

RADIANT SENSITIVITY OR SPECTRAL RESPONSIVITY
The radiant sensitivity is the electrical output voltage divided by the optical power of the detector, for this
kind of sensors. It is independent on the wavelength of the radiation light.

* Thermal detectors transduce the optical power Py in an electrical output signal Vp
of the temperature sensor (voltage signal of thermoresistances in Bolometers and
of thermocouples in Thermopiles).

+ The basic quantitative characterization of the performance of the detector is
given by the Radiant Sensitivity (also called Spectral Responsivity) Sp, defined as

electrical output voltage [in V]

Sp=
optical power on the detector sensitive area [in W]

* For a given absorbed power the detector is heated at a given level, independent
of the radiation wavelength A. Therefore, uniform S, would be obtained at all A if
the reflection and absorption were constant, independent of A.

+ Variations of reflection and absorption vs A are kept at moderate level with
modern absorber technologies. Fairly uniform S, is achieved over fairly wide
wavelength ranges, extended well into the infrared spectral region.
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SUPERCONDUCTING NANOWIRE

The idea is that we take a piece of material and we cool down it at very low levels, 0.4 K. At this point,
we switch in the superconductive regime; in this regime, the material has no resistance and infinite
conductivity. As soon as we absorb one photon, which has a certain energy, we change the temperature
of the material, which it is at superconductive level, so it is enough a small change in temperature to
break the superconductivity, and the resistance of the material is no more zero, it increases to the value
of the material. So in this way we can detect every single photon.

As far as we absorb the photon, after a while the material returns to the previous state because the heat
is dissipated. So we can neglect a single photon, but with which precision? Up to some ps.

Some problems are related to the cost of the system and the dimensions of these materials, which are very
small, nm, and focusing the light on few nanometers is difficult.

(a) (b)

i)

)

=05

QUANTUM PHOTODETECTOR PRINCIPLES

We need to create something from the commercial point of view. The idea is that we use the energy of
the single photon or light not to change the temperature of the material but to create a carrier. We use
the photoelectric effect to product a carrier, we create electrons directly from light. We have two types of
detectors: vacuum tubes and semiconductor devices. They share the same working principle, and
nowadays vacuum tubes are still used a lot in many applications, because we can create very large devices
with low noise, while this is not possible with semiconductor devices.
* A different principle for the detection of light signals is to exploit photo-electric effects
for producing directly an electrical current in the detector. The energy of the absorbed

photons is used for generating free charge carriers, which constitute the elements of the

detector current.

* Detectors relying on this principle are called «Quantum Photodetectors» or «Photon

Detectors»

* Photon Detectors can be vacuum-tube or semiconductor devices
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Principles of Quantum Photodetectors

Vacuum tube

Let’s take a vacuum tube made of glass and we have an electrode on one side, the cathode where photons
impinging can create electrons, which are emitted and are in the middle of an electric field due to the
reverse voltage and are collected at the anode.

Vacuum-Tube detector devices:
Photo-Tubes or Photo-Diodes

* An electrode (cathode K) in a vacuum
enclosure receives the photons

* By photo-electric effect the cathode
Va emits electrons in vacuum.

VRS

* The electrons are drawn by the
electric field to another electrode
biased at higher potential (anode A)

* Current flows through the terminals
(photocathode and anode).

Semiconductor detectors
The photodetector is the silicon photodetector, so the pn junction. The photon creates a electron/hole
pair and due to the electric field we have a current. The idea is the same of the vacuum tube, but in the
case of the vacuum tube the detector is bulky and fragile (made of glass)

EFFICIENCY

Depletion

Semiconductor detector devices:
Photo-Diodes

7 hv Zhv I A * Photons impact on a reverse-biased
n* — 4 p-n junction diode
\:T \i -q * The absorbed photons raise
-5 1)+q + electrons from valence band to
$_ _____________ C> Va conduction band of the
p* - semiconductor, thereby generating
free electron-hole pairs.

layer
T

=~

* The free carriers generated in the
zone of high electric field (the
depletion layer) are drawn by the

| junction electric field (the electrons
= to the n-terminal and the holes to
the p-terminal)

* Current flows through the terminals.

Quantum photodetectors transduce optical signals in electrical current signals by
collecting the free electrons generated by the photons of the optical radiation.

The basic quantitative characterization of the performance of the detector is given
by the Quantum Detection Efficiency (or Photon Detection Efficiency) n, defined
as

number of photogenerated electrons (or electron-hole pairs)

Ne
Ub) N—p
number of photons reaching the detector

However, since in many engineering tasks the focus is on the transduction from
optical power to electrical current, the Radiant Sensitivity S, is often employed
also for quantum photodetectors, defined as

electrical output current [in A]

0= " — “hlw
optical power on the detector sensitive area [in W]
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The photon detection efficiency is the ratio between the number of photogenerated electrons (or e/h
pairs) divided by the number of photons reaching the detector.

So let’s assume to have some photons with a wavelength lambda arriving with a rate n_p on a quantum
detector. We can compute the optical power that is n_p times the energy of each photon. Hence we have
an output current that is the multiplication of the charge of each electron times the rate of the produced
current.

Then, the radiant sensitivity is the ratio between the current and the optical power.

Photons of wavelength A arriving with steady rate n, on a quantum detector
convey an optical power P,

P, =nyhv
the electrons (or e-h pairs) photogenerated in the detector with steady rate n,

pl’OdUCe a current _
Ip = neq

The Radiant Sensitivity is

Ip ne q mne 4

0= T, o m, ke
q
and since np = ne/np p Alum] R .
So =Mp pr =0 o H:im/
q

We see that the Radiant Sensitivity of the quantum detectors intrinsically depends
on the wavelength A, that is, even with constant quantum efficiency ny. This
occurs because a given optical power P, corresponds to different photon rates n,, at
different wavelengths A

Differently from the bolometer, radiant sensitivity strongly depends on the wavelength, so if we maintain
the same power but we change the wavelength we are changing the energy of each photon so the number
of photon, so the output current. This is not a big issue.

PHOTON STATISTICS AND NOISE

* The optical radiation is composed of photons arriving randomly in time;
the photon number N, in a given time interval T is a statistical variable with
— b T3 2
; 2 _ N2
mean N, and variance g, = Ny — (Np)
* The random fluctuations of the photons are the noise already present at optical

level. This optical noise can be due to a background photon flux and to the
actual desired optical signal.

* In most cases the photon statistics is well approximated by the Poisson statistics,
so thatitis

B—
Up—Np

* The optical power arriving to the detector is composed of quanta with energy hv
arriving randomly at rate n,,. It is the analog at optical level of a shot electrical
current: the mean optical power is P, = n, hv (analog to I, = n.q ) ; the shot
optical noise has unilateral spectral density S, (analog to §; = 2q1, )

hc
S, =2hvE, = 27 £,

* Note that for a given optical power P, the shot noise density decreases as the
wavelength Ais increased

The arrival of photons can be approximated with a Poisson statistic, so the variance of the process is
equal to the average value.

From the noise standpoint, we can say that the optical power arriving to the detector is composed by
quanta with energy hv, since each photon arrives with energy hv, with a random rate n_p.
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This is the exact same situation that we have for the shot noise with the current, so we get the same
unilateral spectral density of the shot noise, in functional form.

CURRENT SIGNALS OF QUANTUM PHOTODETECTORS

We can start by studying the delta response of the system. We have always a cut off at high frequency;
also if we have a very fast shot of light, the output is not a delta, the output is still fast but with longer
duration.

Firstly, we define some parameters that help us to define the situation, such as the single electron
response: the response of our detector to a single photon. If we don’t have a single photon we can use
linear superposition and reconstruct the response of multiphoton as a linear superposition of a single
electron response.

* In the transduction of optical signals to current signals by Quantum Photodetectors
the dynamic response has a cut-off at high frequency. Ultrafast optical pulses are
transduced to current pulses that are still fast, but have longer duration.

* The response to a multi-photon optical signal is the linear superposition of the
elementary responses to individual photons. The response to a single photon is
also called Single-Electron-Response SER because a photon generates just one free
electron (or one electron-hole pair).

* ltis simply wrong to consider the SER a &-like current pulse occurring at the time
where the photogenerated charge carrier impacts on the collector electrode.
The carrier induces a charge in the collector electrode before reaching it; the
induced charge varies with the carrier position, so that current flows during all the
carrier travel in the electric field.

* The waveform of the current signal is obtained by taking the derivative of the
charge induced on the collector electrode as a function of time. To compute this
charge is an electrostatic problem not easy to solve in general. However, the
mathematical treatment can be remarkably simplified by preliminarly computing
the motion of the charge carriers and exploiting then the Shockley-Ramo theorem.

The Shockley-Remo theorem helps us in understanding which is the output in current

Shockley-Ramo theorem

The output current due to an electron traveling towards the collector electrode can be
obtained by applying the Shockley-Ramo theorem in three steps

1. The motion of the electron must be computed; i.e. the trajectory and the velocity
v, at every point of it must be known

2. Areference electric field £, must be computed, which is the field that would exist
in the device (in particular along the electron trajectory) under the following
circumstances:

electron removed
output electrode raised at unit potential
all other conductors at ground potential

3. The Shockley-Ramo theorem states that the current i, that flows at the output
electrode due to the electron motion can be simply computed as

i, =qE,*v, =qE, v

Ve ¢

where ¢ denotes scalar product and E,. is the component of the field E in the
direction of the velocity v,

Firstly we study the motion of the electron in terms of trajectory and velocity. Then we have to use a
reference electric field with the electron removed, the output electrode raised to unitary potential and all
the other conductors at ground level.
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Carrier motion in a phototube (PT)

VACUUM PHOTOTUBE WITH PLANAR GEOMETRY

hv w, = cathode to anode distance
JJ_, V, = bias voltage
K A Ep ::’—A true electric field (in the - x direction)
a . Vp = VAWL" potential distribution
wﬂ
fe—————>
; LoX g ELECTRON MOTION IN VACUUM
i Io ! R, (-qg charge; m mass)
| v, ! _ o _ %
‘ SN A acceleration %= 7 T
‘ AN av.
: . A
Ep S Velocity —ve=act= e
Electric Field I W
Wa V.
x

~

Potential

: N feava

Ve ) iz
L

o 2m

0 w, X Transit time g = waj%

The potential distribution is linear. The trajectory of the electron is linear from the cathode to the anode.
The transit time is the time at which we reach the maximum speed, that is the speed we have at the anode.

Then we have to ground all the conductors except for the output collector anode that has to be set to a

potential of 1. Since Va = 1 and cathode is to ground, the electric field is 1/w_a.

Reference electric £, field computed with
K A electron removed; V,=1; V=0

2o E,=— .
Wa parallel to the x-axis

i True electron velocity

~Vi=1 _ Va

A Ve = e t parallel to the x-axis
Ev L 1 v
- A 5
L % [
0 V‘Va X m
0 t, t

SR theorem: the output current due to a single electron is

2 -
: qVa €
e = qEyv. = mWé t /[ a 2qVy
Wai m
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Single electron response (SER)

In a phototube with planar geometry the single electron response (SER) is a pulse
with triangular waveform

i

q*Va ¢ i
ic = qEvUC = Wt 0<st<ty) q 2qV,
a W, m

0 t t

a

The frequency response is the Fourier transform of the SER pulse, which has a high

frequency cutoff inversely proportional to the pulse width.
The pulse width is set by the transit time t, of the electron from cathode to anode

t,= 22 Ma _537.90-6ta
= 2Z. —337- Ma_
A N7

Typical values for phototubes are around w = Icm = 0,01m and V,= 100V, which
correspond to transit time around t,= 3,3 ns

It is a detector with an extremely high bias voltage, 100V, and we have a transit time of 3.3ns, which is
almost 300MHz in the frequency domain. We can further increase the speed of the PT, reducing the
transit time. We have to increase the bias voltage, which is however leading to an increase in power
dissipation. Hence we can reduce the width of the detector, but in doing so we might increase the stray
capacitance. So the idea is to use a grid.

SCREENED-ANODE PT

We use the grid to reduce the SER pulse. The idea is that the grid acts as an electrostatic screen.

Since I'm adding a grid, am I changing the behaviour of the detector? Not necessarily, if I put the grid at
a voltage that is exactly the voltage that I have in the position of the grid if I had no grid. In this case it is
like if the grid isn’t existing. Now we apply the Ramo theorem.

G
w, *
4 R B .
PR EEEENY * A shorter SER pulse can be obtained by
. inserting a metal wire grid in front of the anode
j: x * The basic idea is that the grid acts as
Vg : electrostatic screen that does not allow an
_|__O+_¢ | electron traveling from x=0 (cathode) to x=w,
| v, ! 1 (grid) to induce charge on the anode.
N S * The grid bias voltage is selected to minimize the
v ; L AN perturbation to the electron motion; i.e.
b B V M, it is set to the potential V,; corresponding to
Va | 70w x=w, in absence of the grid (or slightly below it).
! P * Inthese conditions, the electric field is
practically the same as in the phototube
Ep P structure without grid and the motion of an
: T Va electron in vacuum is also the same.
i Wa
0 w, W x
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Schockley-Ramo theorem application

The electron has the same speed and trajectory of the previous vacuum tube simply because the electrode
that is going out from the cathode sees exactly the same electric field. But we have a different evolution
in time of the induced charge, because up until the grid, the electron is not able to induce a charge on the

anode. If we apply the Ramo theorem, the grid electrode must also be grounded.

* Same electron motion as in the phototube

w (.; without grid
K . : A « Different evolution in time of the induced
<_WQ:. charge on the anode.
: * Infact, the reference field E, is now very
° x different and neatly shows that charge is
V=0 ': induced on the anode only during the last
g ! part of the electron trajectory, i.e. from
V=1 ; ‘ x=w, (grid) to x=w, (anode)
i S~
L E,=0 for 0<x<w,
E, 1 1
Wa — Wy E,=—— for w,<x<w
| v Wy — wg f g a
0 w, Wa @ X

+ The SR theorem states that the SER current is
e =qEyve

Comparison
With the grid, the single electron response is much shorter, and also higher. So we increase the BW and

also SNR because the current is higher.

True electron velocity

G
w, o Ve
K w . A b= V4 . R 29Va
<—9—): © 7 mw, /[ i m
. 0 t, t
: > X Reference field of SR theorem
V=0 |
P E,=0 for 0<x<w,
1 /\V’ﬁ 1 : " [
1 e E,=— for w,<x<w,
=— H ) v W(l _ Wq f g a
E, 1 ’
W, — W,
Ly & 7 SR theorem i
0 W, Wo x i
i. with grid
m/w, w,
tg—ty= [2— = — yW i, without grid
vz v 1, —t, <1,
Wq \ -
=t (l—‘w“’) =
a Wu 0 t
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PHOTOTUBE DEVICE STRUCTURE

A
V, Signal out
hv Signal out
N> — VA
N>
hv
"
Vak
()
-+
SIDE-WINDOW TUBE END-WINDOW TUBE
* Photocathode: thick opaque layer * Photocathode: thin semitransparent layer
deposited on metal support electrode deposited on the interior of the glass
*  Side window of the glass tube: tube end
unfavourable geometry, collection of * End window of the glass tube: favourable
light on the photocathode is uneasy geometry, collection of light on the
and not very efficient photocathode is easy and efficient

Typically is not used as in the left, because the problem is in collecting light. Since the focusing is made
with lenses, focusing it on the side is very difficult. The solution is the one on the right, the back
illuminated cathode.

Stationary I-V curve

* Atlow voltage V, the ,

photocurrent collected at I4(nA) ,/—> Current saturation region
the anode is limited by the 4 K o
r - L4 L4
electron space charge effect 7
- 400 + ! I.ocP
+ As Vyis increased the o =
. . o !
higher electric field reduces r / Iy € Py
the space charge and the 200 4 K
current increases ! I % Py
. B !
* As V, exceeds a saturation K P, = optical power
value V, all Vak

7100 200 300
photoelectrons are

collected and the current is

PT stationary equivalent circuit:
constant vs. V¢

photo-controlled current generator
* The saturation value Vs A

increases with the optical

power P, on the detector

* Phototubes are operated I, =5p- Py

biased into the current
saturation region K

We have the plot of the photocurrent as a function of the bias voltage. The curve is flat, so we don’t need
to increase a lot the bias voltage. However, at very low bias voltage we cannot reach a steady state for
the signal.

When electrons are near the anode, they can shield the electric field driving them, so the new emitted
electrons see a smaller electric field = space charge effect. To overcome this issue, the bias voltage can
be increased, so we need at least 100V of biasing.

In the end we will use the sensor only on the flat portion of the characteristic, so it will behave as a current
generator.
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PHOTOTUBE DYNAMIC RESPONSE

Main causes that limit the dynamic response:
1. Transduction from light flux to detector

i

current: the SER waveform hp(t) has . |
finite-width T - J
2. Load circuit: it has a low-pass filter action, c i R
&-response h,(t) with finite-width T, Vak ~ i
ST L

The 6-response from light power P, to V, has
overall shape hp(t) resulting from the cascade PT equivalent circuit

Va
hp(t) = hp(6) * hy (1)
. - - Iy C__ R,
the width T, thus results from quadratic addition L
Ry,
— =TT eRC
"}==\/'1'§+'1'E=J'1'§+Rfff — LT T45R.C,

and for well exploiting the fast intrinsic response  Load-circuit 8-response Ry - h (t) with
hp(t) of a detector it is sufficient to have

1 ¢
hi(8) = 1(6) — (——)
T, =R,C <Tp u(®) =10 e\ -7

We have an intrinsic SER of the detector time response of Td. Then we have a load circuit, which
typically includes also a capacitance, so an RC network. Are we limited by the sensor, RC or amplifier?
The PT equivalent circuit is an RC network.

The SER is for us a filter intrinsic in the detector, so it is the delta response of the PT. if we have more
than one filter we have to convolve the output of the detector and the delta response of the filter. We are
interested in the width of the response.

At first approximation, the output time can be obtained as the square sum of the two times of the two
filters. Of course we are neglecting the amplifier.

We can be either dominated by the sensor or the RC, or they can be of the same order. The best scenario
is being dominated by the detector, since once we choose the detector we cannot modify it, so we are
interested in optimizing all the other parts, so the electronics.

Fast response and wide active area

The light-to-current transduction by a phototube can be fairly fast, with SER pulse
duration T around 1ns. For exploiting it, the load filtering must be adequately limited

+ for wide-band response low-value R is employed; typically, R, = 50 Q to match a
coaxial cable connection. With T, = 1ns and R, = 50 (), the above requirement

implies C, < 20pF

* The load capacitance C; is sum of
C, input capacitance of amplifier (or other circuit) connected; it can be <1pF
C, stray capacitance of connections; it can be < 2pF
Cp electrode capacitance; it depends on the area A, of the photocathode

* Cpissmall even for wide sensitive area Ap , because the dielectric is vacuum and

the electrode spacing is wide. In plane geometry with cathode-to-anode spacing w,

Ap F
Cp =0~ (e, = 886) e
. o a , m 5 &‘Hﬁqg&_

e.g. with w, = Iemitis C,[pF] = 0,09A,[cm?]. It’s only 9pF for Ap,=100 cm - R
* In conclusion: a definite advantage of Vacuum Phototubes is that they offer very

wide sensitive area together with fast response. We will see that with

semiconductor photodiodes this is not achievable
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We want to get an RC value lower than 1ns, since it is the time response of the PT. Since we are interested
in high speed, it is not suggested to use the optimum filter, typically fast and low noise are not compatible.
Hence normally the R is 50 Ohm, the impedance of the transmission line. If the resistance is fixed, the
capacitance has to be lower than 20 pF according to a Td of 1ns.

Contributions on the capacitance
- Input capacitance.
- Stray capacitance of the connections, because we are going ‘outside the IC package’.
- Electrode capacitance, proportional to the area.

As far as the dimensions of the detector are increased, collection of light is easier, but the speed of the
detector is not influenced on the area of the detector. This is a great advantage because focusing light on
a detector is very difficult, e.g. if we are collecting light from a star.

ELECTRON PHOTOEMISSION AND PHOTOCATHODE TECHNOLOGY

It is a three-step process:

* free electron generation by photon absorption
* electron diffusion in the photocathode layer

* escape of electron into the vacuum

Suitable materials are semiconductors. Metals are unsuitable because of the high
reflectivity, small diffusion length and low escape probability (high potential step
from inside up to the vacuum level).

High-Energy Electron Diffusion Length Thermalized Electron D_iffus'lon Length
L., = 0,01 pum (Direct Gap) L =1—10 um (Direct Gap)

VACUUM

Electron collisions with phonans
= 50meV energy loss

Ey Vacuum potential level
E, Electron Affinity

Conduction band

1 C
Es Energy Gap
__________ EV

Valence band

Having an energy higher than the vacuum level is not enough to create a free electron emitted, because
it has to reach the outside of the detector. So it has to have an energy higher than the vacuum level at the
interface with vacuum to be released.

1. Free electrons are generated
with energy higher than the

vacuum level and are slowed 2. As long as an electron

down by phonon collisions has energy level higher

while diffusing a few 10nm than the external potential
’ it can escape into vacuum

3. If it does not escape, in a few ps it \{ Electron .~ Electron
thermalizes down to the bottom of the .

i Vacuum level
conduction band \_’ Vacuum leve
1NLoe

- Ea
Conduction band

Fermi level

4. At the bottom of conduction band an

electron can diffuse further a few um and | /////////‘5%/\/‘\/

about 100ps before recombining (i.e. Valence band
getting down to valence band) but it
cannot escape any more into vacuum
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When the e- reaches the surface, it can either escape if the energy is higher than the vacuum level or it is
lower and reabsorbed. 10nm is the distance the e- can travel without loosing too much energy.

One problem is that electrons diffuse inside the material and loose some energy before being eventually
emitted. If all the energy is lost, it cannot escape. Hence to optimize this emission, the absorption length
must be in the order of magnitude of the length the e- travel before loosing all the energy.

So we have to create very small detectors. As soon as we increase the absorption length, we would like
also to increase the length with which the e- are travelling, but this is not possible, and in conclusion at
long wavelength this type of detectors cannot collect anything.

In order to offer good quantum detection efficiency, the photocathode material
must fulfill some basic requirements.

* The inside-to-vacuum energy barrier E; + E, must be smaller than the photon
energy £, . In the visible range 1,6 eV < E,< 3,1 eV and £, = 1eV for
semiconductors; therefore, the electron affinity must be limited

Eq, < 1leV

¢ Electrons generated in deep layers are not emitted; escape probability is high only
for electrons generated in a surface layer that is very thin, about a diffusion length
L., of high-energy electrons. For a significant absorption in this layer the optical
penetration length L, must anyway be NOT much higher than L, ; for a high
absorption it should be comparable

La ~ Leh

In conclusion, the thickness of the photocathode layer contributing to the electron
emission is intrinsically limited to about L, in any case. That is, the active layer is
very thin, independent from the total thickness of the photocathode.

Semitransparent PT
The active layer of the photocathode is always very

thin, also for thick cathodes deposited on a metal
electrode.

Semitransparent ohotocathode
Y hv

This remark led to develop thin photocathodes (with
thickness about = L, ) deposited on the interior of PC
the glass tube in the end-window of the detector.
They are called semitransparent cathodes. They are
illuminated on the outer side through the glass
window end emit photoelectrons from the inner
side. They make possible and easy a much better
optical collection than the side-window geometry hv

&-

e

Opaque photocathode

183



Types of PT

Classifications of Photocathode types are made by industrial standard committees.
Most widely used is that by JEDEC (Joint Electron Devices Engineering Council US),

which denotes cathode types S1, S2, ... and classifies them by spectral responsivity
type (rather than by chemical composition or fabrication recipe).

* S1 was introduced in the '30s and is still in use. The QE is low (peak np=0,4% at
=800nm) but covers a wide spectrum in the IR. It is a matrix of Cesium oxide that
includes silver microparticles and it’s currently denoted Ag-O-Cs.

Highly efficient photocathodes for the visible range were introduced in the '50s and
progressively developed employing compounds of alkali metals (Na, K, Cs, which have
low work functions) and Antimony (Sb). Main types:

* S11 ranges from 300nm to 600nm, peak np=15% at 450nm; alkali halide Cs;Sh

* S$20 ranges from 300nm to 800nm, peak np=20% at 350nm; multi-alkali halide Na-
K-Sh-Cs

* S25 extends the range up to 800nm, peak np=5% at 600nm; multi-alkali Na-K-Sb-Cs
like S20, but with a thicker layer that gives higher sensitivity in the red, at the cost
of lower sensitivity in the blue-green

Quantum efficiency is 0.4% at 800nm, so not particularly efficient. S11 cannot instead detect at 800nm.
If we increase the efficiency we are shifting the wavelength range.

Radiant Sensitivity or Spectral responsivity

100

80— fonc . Vo =

s It —E,“S’ZN;.U"-‘ i T /\ ——— %
1 . S e

: "L 30— —F— 520 17N " [ | | PHOTOCATHODE TYPES
> 2 B By g ,7*'??]'7" i
= AT [ \}\ T 1] S1(Ae-0Cs
E o T L Th o1 TE— 0\ o —| oldest type
Z _ = c— = e —— infrared-sensitive)
v @ 7 T 50
28 4= — —— \[\ 02
= w - e =S |%
<8 2= 7 \\ 1 H\ T}slf
w —1 - /o %
S 1o IR / - \\ o] * S20 Na-K-Sb-Cs
= o8 525 + — ~ = :_ : :
g 0.6 ;.\\ ,ﬂT,,'f; SL‘\\ e \\ Multi-alkali halide

0.4 - — . - -
o \ 1T \ S25 Multi alkali halide
E 02— R extended red sensitivity

01 - \\ g |

100 200 300 400 500 600 700 800 1000 1200
WAVELENGTH (nm)
(Log scale)

NB: the auxiliary lines marked with Quantum Detection Efficiency (QE) in %
make possible to read directly from the diagram also the QE

The lines are the lines of fixed quantum detector efficiency, and we notice that there is no cathode with

a quantum detector efficiency higher than 25%. So we cannot use them at a wavelength higher than
800nm.

PT WITH NEGATIVE Ea

We want to overcome the problem of e- loosing energy before reaching the surface and hence not being
able to escape. We use few atomic layers of Cs-O to vent the band diagram to have an electron energy
that is higher than the vacuum level, so we are able to escape outside with an electron affinity lower than
the conduction band. So the quantum efficiency is higher also at long wavelength, the drawback is that
noise is increased. However, lambda is still 900nm, not um.
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Progress in semiconductor physics and
technology led in the '70s to devise a new class Electron Electron
of photocathodes, called photocathodes with S L
Negative Electron Affinity (NEA)

* On a GaAs crystal substrate, a few atomic
layers of Cesium Oxide (Cs-0O) are deposited
and activated, thus forming a very thin
positive charge layer of Cs* ions.

Conduction band

Vacuum
evel

Eg = 14¢V

Fermi level

LLLLITETD

Valence band

* The electric field generated at the surface
curves downward the energy bands: the
vacuum potential level is now lower than
the bottom of conduction band, i.e. the
electron affinity E, is negative

In conclusion: NEA cathodes offer
higher QE value and broader
spectral range, extending up to
the absorption edge of GaAs (i.e.
A=900nm corresponding to the
gap E;~ 1,4 eV)

* Electrons can now escape into vacuum also
when thermalized at the bottom of
conduction band; QE is thus enhanced

* Photoelectron emission is obtained also
with photons with lower energy £, , down to
the GaAs energy gap £,

DARK CURRENT AND NOISE

* Afinite current is emitted by any photocathode even when kept in the dark,
without any light falling on it.

* Itis a spontaneous emission due to thermal effects (phonon-electron
interactions in the cathode) and is called Dark Current.

* The dark current density jg (per unit area of cathode) depends on the
cathode type and on the cathode temperature. Typical values at room
temperature are reported in the Table

PhotoCathode | Dark Current density | Dark Electron Rate density
type jg in AJem? ng in electrons/s-cm?
S1 =1013 =106
S11 1016 - 105 103 - 10*
S20 and 525 1019-1071 1-103
GaAs NEA 1018 - 106 10- 103

Electrons can also be generated with no light, that is the dark current. This is noise, electrons thermally
generated, and we cannot distinguish a thermal or optical generated photon, so if it is noise or signal.

Thermal generation is in the order of 10”3 electrons per square cm (neglecting S1 case), which is quite
small with respect to the optical generated ones.

The problem of dark current is not a problem itself, the fact that it gives us an offset is never a problem,
we measure is and subtract it. The problem is not the absolute value of dark current, but the shot noise
associated to it; in fact, we can remove the dark current but not the shot noise associated to it.

Detector internal noise
Once we have the thermally generated e- we can compute the current, which is shot noise.

This value is not important for this kind of detectors because this noise is negligible compared to any

other source of noise.
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The total Dark Current is [z = jpAp where Ay is the area of the photocathode.

The shot noise of /5 is the photodetector unavoidable internal noise, with effective
power density (unilateral)

E =.2qlp = VZ‘UB\[A_D

Typical values of /Sp are reported in the Table

PhotoCathode Dark Current density jg Shot Noise Effective density ‘/g
type Afcm? pA/\/EW
S1 ~1013 =10-%
S11 1016 - 1015 = 10°
520 and S25 1019- 1016 ~ 10-7—-10-6
GaAs NEA 1018 - 1016 ~ 10-6

Amplifier’s noise

* We know that for operating with low-noise a high impedance sensor must be
connected to a preamplifier with high input impedance and low input noise. The
best available preamplifiers have current noise at room temperature

- pA
NS 0017=

* The circuit noise ‘/S_[ is always dominant and the detector internal noise \/S_B
plays in practice no role with any phototube, even for detectors with S1
photocathodes (that have the highest noise) and even with very wide sensitive
area (up to many square centimeters). In fact, for producing shot noise with power
density higher than that of the circuit noise, the phototube dark current should be
Ig>300pA, corresponding to an emission rate ng > 107 electrons/s.

* Vacuum tube photodiodes can thus be employed for operating at low noise
without stringent limits to the sensitive area. As we will see, this is a definite
advantage over semiconductor photodiodes.

Current noise of the amplifier is dominant over the one of the PT. with the PT we don’t create large
device because they are unuseful, not because the noise is increasing, or better, is always negligible with
respect to the noise of the amplifier.
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LOW NOISE PREAMPLIFIERS FOR PHOTODIODES
Let’s put aside the speed now to focus on the best possible SNR.

Voltage buffer preamplifier

* Photodiodes are high-impedance sensors (both the vacuum phototubes and the
semiconductor photodiodes), hence for low-noise operation they must be
connected to preamplifiers with high input resistance* R, = oo (see slides in OPF2)

* Simple configuration: voltage buffer based on a high-input-impedance and low-noise

amplifier
s, Q
Tt ﬂ C,
I : N
R - [ Output
IS:Q5(t)@ :E:Z - Sit v, signal
S C, : S, noise

.||—

+ (, total load capacitance = C,, (detector cap.) + C,, (amplifier cap.) + Cs (connection cap.)
« R, total load resistance =

« S, amplifier voltage noise

+ S;total current noise = S, detector noise + S;, amplifier noise (+ S;z load resistor noise)

* Ria = true physical resistance between the input terminals, not the dynamic input resistance including feedback effects

Buffer voltage output:

: Q
Step signal v(®) = ¢ 10

X 1
Noise Spectrum Sp=Sp+Sir——=
w2Cf

The buffer configuration has some noteworthy drawbacks.

* The signal amplitude Q/C; is ruled by the total capacitance C, = Cp + C;4 + C,, whose
value is not very small and not well controllable, particularly in cases where long
sensor-preamplifier connections contribute a remarkable C, .

C, may be different from sample to sample of the amplifier, even of the same
amplifier model.

* With signals in high-rate sequence, the superposition of voltage steps may build-up
and produce a significant decrease of the photodiode bias voltage. This may change
the operating conditions and consequently the parameters and performance of the
detector, particularly if the photodiode is biased not much above the saturation
voltage.

The problem is the capacitance C_L, which is the capacitance of the detector Cd, small, the one of the
amplifier Ca and of the connection Cs. So we might be in situations where the Ca and Cs are dominating.
The idea is to change this approach (for semiconductor devices this problem is smaller since we have
smaller area and so smaller capacitance).

Furthermore, with large pulses in input we change the voltage across C_L, so we are also changing the
bias voltage of the PT.

The solution is the following.
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Charge Preamplifier

Alternative configuration: operational integrator based on a low-noise amplifier
with high input impedance =TT TTTToo

i 1
'  omnaan |
Z P
: _“_ : Out_put
Z [ C: Fo_|La v, signal
CTTT T 1 - Sc noise
1 0 L]
1 1
I 1 Riy = oo
: Gl o Sir . 8,9
IS:QIS(I‘)@ ::::: ::: S Cr~ Cp
PTr-e | 0 Y
1 1 _—
! H
..____i___l

* Crcapacitor in feedback. The Cr value can be very small and is accurately set by the
capacitor component, because the inherent stray capacitance between output and input
pins of the amplifier is negligible. Therefore, one can work with C. << C,

* R feedback resistor =2 oo

* (, total load capacitance = Cp (detector cap.) + C;4 (amplifier cap.) + Cs (connection cap.)
* R, total load resistance 2 o

« S, amplifier voltage noise

* S total current noise = S;, detector noise + S, amplifier noise (+ S load resistor noise)

We have our sensor and the stray capacitance C_L, but we use a transimpedance amplifier and we put
Cf in feedback.

We can work with Cf much lower than C_L, so with a signal higher than the previous case. If we look at
the signal, the effect of Cfis that we have Q/Cf instead of Q/C_L.

Output Signal:

in frequency domain 1. = —QZp = —_L intime v(t) = —C%- 1(6)

jowCp

With respect to the buffer, the amplitude is greater by the gain factor G, = C, /Cc>> 1

= QG @ G
< CF CF CL CF b [4 b

Advantages:
* The higher signal makes less relevant the noise of the following circuits

* The signal amplitude is ruled by the well controlled and stable Cr, no more by the
other capacitances Cj, C;4 and C,

* The detector terminal is connected to the amplifier virtual ground, hence it stays
at constant bias voltage even with signals in high-rate sequence

The noise analysis (see next slide) confirms that these advantages are obtained
without degrading the S/N. The charge amplifier configuration thus is the solution of
choice in most cases met in practice.

We define a gain C_L/Cfjust to compare the situation with the previous one.
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Output Noise Spectrum :
« the current noise S;;is processed by the same transfer function as the current signal

« the voltage noise S, is processed with the transfer function from non-inverting input
to amplifier output.

Denoting by Z, the load impedance and by Z; the feedback impedance

Zp? )
s.=s,|1 +—‘ + SiplZel
Z

in our case Z; = 1/jwC; and Zr = 1/jwCs so that

c,? 1 C\2 Cp\2
1+—"‘ +5, (—L) lsl,(1+—F) +5
Cr L

s. =S - =
c v lTwchz‘ CF C

——
' wZCE]

if C¢/C, << 1, with good approximation it is

CL z ~ 1 CL z ~ ~2 ¢
X | Se= (C_F) Sy + Sir Wik = (C_F) Sp = G Sp

With respect to the buffer, the signal and noise thus benefit of the same gain G, :
therefore, the attainable S/N is the same with the charge preamplifier as with the
voltage buffer preamplifier

X is the WN of before times the gain squared. So we are getting the same SNR but with some advantages.
We are not just adding a gain, in fact we are changing the configuration when saying Cf << C_L.

NEP AND DETECTIVITY

.

Evaluations and comparisons of Photocathodes are currently based on the Noise
Equivalent Power NEP, a figure of merit that takes into account the photon detection
efficiency and the detector dark-current noise, but not the preamplifier noise.

NEP is defined with reference to a situation where the limit to the minimum
measurable signal is set by the internal noise of the detector and not by the
electronic circuit noise. We have seen that this is NOT the case with PhotoTubes but
we will see that it is the case with PhotoMultiplier Tubes. NEP was devised as an
figure of merit for comparing objectively the intrinsic quality of different detectors.
Let a photocathode have area Aj, signal current /, and Dark Current /g with area
density jz . Employing a filter with bandwidth (unilateral) Af we have noise

Jé =\ 2qlplf = /2qjpy/ Apy/Af and N &

in

The minimum measurable current signal I, i, (corresponding to S/N=1) is
Ipv min = Jé =+ quBV AD\/A_](

For illumination with optical power P, at a given A the Detector Responsivity is

g b _ A Al
D—Pp—?’lb E—?’JD 1,24
q

NEP is the Noise Equivalent Power, which is unuseful for the PT. It is the minimum optical power I can
detect to have a SNR = 1 if the only noise present is the noise of the detector. It is nosense on the PT
because I'm never limited by the noise of the detector, but by the electronics typically. In a lot of other
detectors this is not the case, however.

NEP is minimum current divided by radiant sensitivity. It is an expression that works if we are limited
by the noise of the detector.

NEP depends on the bandwidth and on the area. However, the bandwidth is connected to the
application we are using the detector in, not strictly to the detector. Moreover, also the area of the detector
should be a choice of the designer depending on the application.

So a new figure of merit is introduced, the detectivity. It is the bandwidth and area divided by the NEP.
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* NEP is defined as the input optical power P, ;) corresponding to the minimum
measurable signal

by \E PO

%)
NEP=P, b
" N S, Sy

D

In essence: NEP = detector noise referred to the input (in this case the optical input).

* However, the NEP is not a fully objective figure of merit for assessing and comparing
the quality of photocathodes: in fact, cathodes of equal quality have different NEP if
they have different area. Furthermore, the NEP is an inverse scale, that is, the best
photocathodes have the lowest NEP figures.

* A different figure named Detectivity D* was therefore derived from the NEP by
a) considering the NEP value normalized to unit sensitive area (Ap = 1cm?) and to
unit filtering bandwidth (Af = 1Hz)

b) defining the Detectivity D* as the reciprocal of the normalized NEP

f / S A 1
D* = VAbyAf thatis D* = D_ =1np- [pm] _
NEP 7 2qjg 1,24 2qjp

The detectivity describes how much good is the detector we are developing.
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PHOTODIODE DEVICES

CARRIER MOTION

Reverse biased p-n junction: V,>0

SIDE-ILLUMINATED JUNCTION

N n*] ] Neutral layer
h | Depleted
Y \Vag 24 - eplete
>+ P layer

Employed for specific purposes,
e.g. microsystems with
integrated waveguides for
on-chip optical connections

FRONT-ILLUMINATED JUNCTION

hv$ N I_ +V,

‘VA n*
|
e d n
o] +q P
} g
P
RL

Most widely employed;

the active area (illuminated area)
can be designed with flexibility and
can attain wide size

Same situation we have in the PT, and also here we can have a side illumination, even If the front
illuminated junction can be used. Side illuminated device has a problem that can also be a good thing;
normally, the diameter of these device is in the order of 50/100 um, much smaller than the photocathode.
The problem is that the thickness of the depleted region is in the order of 1um, and focusing the light here
is a problem. So the ‘height’ is 1 um and the length 50 um, and all this length can be used to absorb the
light, even if the entrance light dimension is small. So I can absorb all the light with 50 um. In the front-

side illuminated I cannot absorb all the light.

We can however focus light with a mono-mode fiber. However, the real advantage of this side-
illuminated structure is when I don’t have to focus the light in.

Carrier motion in PD

+ VA_I

’\/\/')OAJI

. o—s

in*‘

Neutral Iafver Depleted layer

Hole Drift

Hole diffuﬁioni Electric Field E
i —_—

Elecfron Drift

Electron Piffusion

[0}

' Neutral substrate

Electron Energy - qV

191



Differently from the pn junction, in the PD we have to consider also upper neutral layer and substrate. If
light comes from the left to the right, it seems that it is absorbed in the depleted region, but it could be
absorbed also in the neutral layer.

In the neutral layer or substrate we are generating still a carrier, but it is not travelling because there is no
electric field, so it moves around, but it is also surrounded, in the neutral layer, by a lot of other carriers,
so the anode cannot see it because it is like ‘shielded’. Hence in the neutral substrate and neutral layer
the carrier is not generating a current.

However, if the carrier is travelling in the neutral substrate and after a while with a random motion it
reaches the depleted region, it is no more shielded, it sees the electric field and it generates a current. The
problem is that there is a strong delay between when the carrier is generated is and the current is.

Carriers generated in the depleted layer:

* Acarrier in the depleted layer induces opposite charges in the conductive electrodes
(neutral semiconductor layer and metal contact to the external circuit)

* The value of the induced charge on a given electrode depends on the carrier
distance from the electrode

* If the carrier moves the charge induced on the electrode varies, hence current flows
through the contact

Conclusion: a carrier drifting in the depleted layer causes current to flow through the
metal contact to the external circuit

Carriers generated in neutral regions:

* A carrierin a neutral region is surrounded by a huge population of other free carriers

*  When the carrier moves the distribution of free carriers swifltly rearranges itself to
electrically screen any effect of the carrier motion on the external circuit

Conclusion: as long as it diffuses in a neutral region, a carrier does NOT cause current
to flow through the metal contact to the external circuit.

However, if by diffusion it reaches the edge of depletion layer before recombining,
then it drifts in the electric field and causes current to flow.

We want to calculate the signal.
1-V characteristic of PD

U 1-V of illuminated p-n junction
L Ty

qV;
I = Jnexpk—; —Ip— 1

lp reverse current (thermally generated carriers) j i
I, photocurrent (photogenerated carriers)

(P, optical power; 54 radiant sensitivity)

U Photodetector (reverse-biased junction)

Ip
Ip detector current = -/;
Vp detector voltage = - V;
Ip =L+ Ip — I ex (—q—VD) Ip Vb= Ve
D p T o — lo€Xp kT
with V, > kT/q b=t tlo~1, | S
- v,

Detector photocurrent o« P; Detector dark current
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It is a diode current with an offset that changes depending on the optical generated current. The PD is
always used in a revere bias mode, because we need depleted region to collect light, which increases
increasing the reverse voltage.

PD operation modes

LINEAR PHOTOCURRENT MODE: PD with high reverse bias V4 > kT/q

N
stationary equivalent circuit:
photo-controlled current generator T Io= 5o
x :
OPERATION WITH Ry R — Vo=R-IpocP,
PASSIVE LOAD A
R
P, %
OPERATION WITH Vo=—R-IpxP,

ACTIVE LOAD

Semiconductor photodiodes can be operated also without a bias voltage source. As
outlined below, the short-circuit current is measured in the photoconductive mode and
the open-circuit voltage in the photovoltaic mode. These configurations have modest
sensitivity and slow response (see later), but their simplicity is attractive in some
practical cases, e.g. for monitoring a steady light over a wide dynamic range.

R
PHOTOCONDUCTIVE MODE
PD in short-circuit V,=0
Li tput | -
inear output scale P, Vo =—R-1Ip
AV S
Ip=ly+lp~1, J:

PHOTOVOLTAIC MODE

. Lo P, +
PD in open-circuit /,=0 AN~ V, =V,
Logarithmic output scale ~ /

kT Ly kT (L, =
Vi :—ln(l +—) z—ln(—)
q o/ q

PHOTON DETECTION EFFICIENCY

It has to take into consideration 4 different aspects (light comes from the top): number of photons
absorbed in the depleted region, or in the opposite way the photons absorbed in the neutral region. The
last is the number of photons reflected on the surface.

193



P, = probability of a photon to generate a free +V
L . ~ hv N
electron-hole pair in the depletion layer =

product of probabilities of n*]..{ w,neutral
1. NOT being reflected at the surface l-q
2. NOT being absorbed in the top neutral layer w,, % +q P wq depleted
3. BEING absorbed in the depletion layer wy l o - W eutral
Denoting by R the reflectivity (probabilityof L 1 | ’
reflection) and L,=1/a optical absorption depth: " P

L

Py=(1—R)-e~™n.(1— e Wa)

In most PD structures the probability that carriers photogenerated in neutral regions
reach by diffusion the depletion layer is negligible, hence the photon detection
efficiency or quantum detection efficiency np is simply

Wd

np = Pg = (1—R)-e%!-(1—e'ﬁ)

S
REHEVBER /

In PD structures where carriers diffusing in neutral regions have significant probability of
reaching the depletion region, additional contributions to n, must be taken into account

1-R is the amount of light that is not reflected. Than we have the exponential decay time of the light that
is absorbed in the neutral region, which is lost at this moment. Then we have 1 - light absorbed in the
depleted region, which is the light that escapes from the bottom.

From this formula we can compute the detection efficiency, which is the percentage of light we can use
to create a signal.

In the PD we can choose any parameter in the formula in the square box, not as a designer, but as a user,
looking at the catalogues. Only the thickness of the neutral region (absorption length) is not of choice
because the manufacturer tries to reduce it as much as possible.

To increase the dimension of the depleted region, we can increase the applied voltage, and sometimes it
is an issue, also because we have the problem of power dissipation. So reducing the bias voltage seems
good. However, I also want a big depletion region because I want a high detection efficiency.

Eta D

_wa wq
np = P4 = (1-R) - e la - (1—9 Ia)

Basic sources of np losses are 1) surface reflection, 2) absorption in the neutral input
layer and 3) incomplete absorption in the depletion layer (active volume).

The np value attained depends on the actual material properties and PD structure and
on the light wavelength A.

np loss by Reflection

* The reflection at vacuum-semiconductor surface is strong because of the high step
discontinuity in refractive index n, since n is high in semiconductors. In Silicon n>3,5
over all the visible range and further rises at short A; the reflectivity is accordingly
high R>30% and further rises at short A .

* Losses can be reduced by tapering the n-transition with deposition of a multi-layer
anti-reflection (AR) coating of materials with n values suitably scaled down from
semiconductor to vacuum. Strong reduction can be obtained, down to R<<10%.

* In Silicon PDs a simple AR coating is obtained with a surface oxide layer (passivation
layer), because SiO, has intermediate n=2. Remarkable reduction can be obtained,
down to R=10%.
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Reflective index of Silicon is quite high and we can use an antireflection coating, and also the reflective
index of SiO2 is in the middle between air and silicon, so putting a layer of it can reduce the reflectivity
below 10%.

As for the losses in the cathode neutral region, this is a problem because at this moment, at the first order,
all the light absorbed in the upper neutral region is lost. So we should reduce it, but it is difficult to make
a very thin upper neutral region form a technological standpoint.

For the depleted region, the problem is the tradeoff between power dissipation and amount of light to be
collected.

Wn Wa
Moo= Py o= (1-R) - eTa - (1-¢T)

np loss by absorption in neutral input layer

* Atshort A, n, cutoff occurs because photons are all absorbed in the neutral region at
the surface. The escape probability is ruled by w, /L, (see 2" term).
In Silicon L, is small at short A : L, < 1 um for A< 500nm and L, <100 nm for A<400nm. In
actual Si-PD structures w, ranges from about 200 nm to 2 um; the cutoff A congruently
ranges from about 300 nm to 400 nm.

np loss by incomplete absorption in the depletion layer

* Atlong A, np cutoff occurs because the absorption falls down. Absorption is ruled by
wy/L, (see 39 term); with w,/L, << 1 we get (1 - e’wd/La) ~wy/Lg.
Silicon is = transparent beyond 1100 nm, since photon energy < Si energy gap. In actual
Si-PD structures the depth w, can range from one to various tens of um; given the A-
dependance of L, , the cutoff A ranges from about 900 nm to 1100 nm.

Current Si-PDs provide high efficiency (n, > 30%) in the visible 400nm < A < 800nm.

The operation range can be extended to longer A with PDs in other semiconductors:
up to 1500nm with Germanium devices and up to 2000nm with InGaAs devices

DARK CURRENT AND NOISE

The noise for us is what we have when there is no signal, i.e. in the dark since we have light sensors.
Dark current is not a problem at all, we don’t have a problem with the baseline or background, the
problem is the shot noise associated to the baseline, background or dark current.

Normally, dark current is due to thermally generated carriers, which create a current with a shot noise
associated to it.

* Even without light falling on it, a finite current /5 flows in a reverse-biased p-n
junction. It is called Dark Current in PDs and reverse current in ordinary
circuit component diodes.

* gis due to spontaneous generation of free carriers by thermal effects (and
also by tunnel effects in device structures with high electric field).

* Just like in Phototubes, the shot noise of /5 is the photodiode internal noise,
with effective power density (unilateral)

VSs =24l

* The internal noise of PD devices with microelectronic-size (sensitive area
<1mm?) is much lower than the input noise of even the best high-impedance
preamplifiers. In the applications of microelectronic PDs the circuit noise is
dominant, just like for vacuum phototubes.

* However, semiconductor PDs have dark current density jg much higher than
vacuum phototubes; this fact significantly limits the active area size of
semiconductor detectors that can be employed for very low-noise operation.
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With the PD the problem of G/R processes is higher than the PT. In the PD we have thermal generation
as usual, but also tunneling. Tunneling increases as soon as we increase the electric field, so it might be
reasonable to have a small bias voltage. However, increasing the bias voltage could be useful to increase
the depleted region and to introduce a gain.

) Generation-Recombination Ec
Ec conduction band Center (mid-gap local level)

Trap deep level

Trap Assisted

Ey valence band ® Tunneling

Indirec’F I_3—C—B BB
transition i
Direct B-B Tunneling
transition
THERMAL TRANSITIONS TRANSITIONS ASSISTED BY HIGH ELECTRIC-FIELD

« Various physical phenomena take part in carrier generation-recombination,
with varying relative relevance in the various cases, with different materials, device
structures and operating conditions (bias voltage, temperature, etc.).

« Silicon has very favourable properties for achieving low generation rate.

« Materials for IR detectors (Ge, InGaAs) have smaller energy gap and therefore
inherently higher noise, since all generation processes are favoured by a smaller Eg

Dark current of Silicon-PD

In Silicon device physics and technology it is ascertained that in reverse-biased
junctions with moderate electric field intensity:

a) the dark current is mainly due to thermal generation of carriers in the depletion
layer. Contribution by diffusion of minority carriers from neighbouring neutral
regions are much lower and negligible in comparison.

b) The thermal generation rate in the depletion has volume density »; given by

n
e = or

n; = intrinsic carrier density; #; = 1,45 x 1012 cm™ @ Room Temperature

7= minority carrier lifetime, strongly dependent on the device technology
i.e on the starting material and on the fabrication process. Typical values:

TRUS ordinary Si technology for integrated circuits
T=ms ordinary Si technology for detector devices
t=1+10s best available Si technology for detector devices

Tau is specific of the material we are using. It defines the amount of time we need to have thermal
generation, and it depends in a strong way on the material we are using and, once fixed the material, on
the substrate (high quality or low quality silicon). Also with the same substrate, if we change the process
to develop the device we could change the quality and the tau.

Dark current and active area of Si-PD

Of course, the thermal generation must be multiplied by the volume, which is the area times the length.
So which is the maximum area, i.e. maximum diameter of the diode we can use, if we fix the noise?
The result is in the formula x.

To understand this, we can make some examples. We want the widest possible area with noise lower
than the preamplifier. Looking at the result, the diameter must be smaller than 1.3 cm. with 10 cm, the
noise was already negligible for the PT, while with PD we have a noise comparable with the amplifier
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with 1.3 cm of PD. So with the PT, the noise of the PT is negligible with respect to the amplifier, with
the PD it depends on the diameter of the PD.

So let’s try to compare directly the PT and the PD. We want to understand the maximum diameter of
the PD to have a noise that is comparable to the one of the PT. The result is 130 um, with a standard
dimension of a PT in the order of inches (2.5cm), so we are comparing um with cm, and this is not good.

A Si-PD with circular active area of diameter D (area A= m D?/4 ) and depletion layer
thickness w, has dark generation rate ng = ngAw. For setting a limit ng <ngax
the diameter D must be limited

Npmax _ 2TNBmax 8TNpmax
A< A, TBmex _ 2TiBmax D <D,y X
ngWqg niwg mTm;wg

Example: Si-PD with w, =10p in good Si detector technology (t =10ms ), intended to have
the widest possible area with noise lower than a preamplifier with \/_l ==~ 0,01pA/VHz.
For keeping the shot noise so low, the generation rate must be limited to ngy,, < 10%s71
which implies

D < Dpax=1,3cm

As we will see, the area limitation is more severe for avalanche photodiodes (APD). The
APD internal gain makes negligible the role of circuit noise, hence it is the APD detector
noise that limits the sensitivity and it is worth to reduce it more drastically.

Example: Si-APD with w =10um, fabricated in very good Si detector technology (say t=1s)
intended to have low dark rate, comparable to that of a good vacuum tube photocathode,

Say Npmax < 103571 like a S20 photocathode with diameter 3cm. The limit is

D < Dpax = 130um

CURRENT SIGNAL IN PDs
Current signal involves the Ramo theorem; the problem is that it is really difficult.

CARRIER MOTION AND DETECTOR CURRENT

With the Ramo theorem we need the speed of the carrier in the device in terms of absolute value and
direction, then we have to compute the reference electric field, we multiply them and we get the result.
With the pn junction we don’t have just the drift current from cathode to anode, but we have a crystal
and so the motion is not linear, because the crystal vibrates. Hence computing the real trajectory of the
carrier is very difficult.

Moreover, also for the absolute value we have a problem, because with the pn junction the speed of the
carrier is proportional to the electric field, which is not constant in the junction. Moreover, the speed is
proportional to the electric field only up to a certain level, then the relation saturates and we have velocity
saturation regardless the applied electric field.

Hence making a real calculation of the Ramo theorem in a pn junction is not piece of cake. So we need
to make some hypothesis.
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* Carriers drifting in depleted regions induce current at PD terminals, whereas
carriers diffusing in neutral regions do NOT

* The Shockley-Ramo (S-R) theorem is still valid in presence of space charge

* Knowing the actual velocity v, of a drifting carrier, the current induced at the
PD terminals can be computed by the S-R theorem

+ The motion of carriers in a semiconductor with electric field E, is different from
that in vacuum with equal E, : carriers suffer scattering on the lattice and
dissipate in the collisions most of the energy received from the field.

No more the acceleration, but the drift velocity v, is a function of the field £ .

* In Silicon (and other materials) the motion of electrons is different from holes:
- at low field E, <2 kV/em = 0,2 V/um the regime is Ohmic: Ve = #cEq
(electron mobility u,=1500 cm?V1s* ; holes ,=450 cm?V)
- as £, increases above 2kV/cm the velocity rises progressively slower
- at Eg= 20kV/cm = 2V/um the velocity saturates at the scattering-limited values

for electrons for holes | vps = 8-10° cm/s

which are almost equal to the thermal scattering velocity v, =107 cm/s

Carrier motion in PD

For the reference electric field we have to remove all the carriers in the junction for the Ramo theorem,
so we have a capacitor. The problem is that the real electric field that gives the speed of the carrier is not
constant, and moreover the electric field is always bigger than the electric field that causes velocity
saturation. In fact, if it is high, we maximize the speed of the carriers and so the response of the device.
If Ed is so high everywhere that the speed is saturated, the velocity of hole and e- is saturated, even if the
trajectory is not linear.

+V, —
+ I T
n p“ : p+ o ¢
AN % cross-section of typical PD structure
i i E L
ﬂl— " X
P J space charge density p in the depleted region
5 electric field £, > saturation Ey over almost all wy
o e o i 5 V- Eds

l_i—‘ Electron drift velocity v, = v,; over almost all wy
Vns

i_‘T,v_F—\‘ Hole drift velocity v, = v,, over almost all wy

} Ps

I - Reference Field E, for S-R theorem

=
<
Il

However, there is another problem, that is the fact that we don’t know where light is absorbed the carrier
in the depleted region. So we have a carrier due to e- and one due to the hole. If the photon is absorbed
close to the border, the hole reaches immediately the contact, so the current of the hole disappears
immediately, while the one due to e- lasts more. We can also have the opposite case, where I have only
the current due to the hole.
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+V,

n* I Current of a single-carrier SR theorem:
P : r E, ref field
VAV i T e—— , reference fie
] ¢ = qcvcEy g, and v, carrier
H = charge and velocity
W, I
s |

| E | Case a) carrier pair generated at mid-way
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X . v
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e— i, electron

H
= «— i, hole

N : .

i Case b) carrier pair generated at p-side

H i i electron
| — i, hole 7
A ] )

| Case c) carrier pair generated at n-side
Case c) ' .
' | inelectron le— i, hole

H

: ; . =t

if we have the single electron response, if we have a signal that is more complicated, I can convolve the
single electron response with the number of photons we get to get the signal shape. The problem with the
PD is that as soon as we change the absorption point, we change the single electron response. We know
that even if we consider deterministic systems, the absorption in the depleted region is exponential, but
it is an average absorption, it doesn’t mean that every photon is absorbed at that thickness. It is a statistical
process.

Taking into account all these things makes impossible a real computation of the Ramo theorem.

Single carrier motion and current

Since the current of one e- is higher than the one of one h due to the difference in mobility, normally we
try to design a device that uses mainly e-. E.g. if the light is at short wavelength, we design a p over n
junction to be sure that all the light is absorbed at the beginning and the electron is the carrier we are
interested in. Instead, if the light is absorbed at the end, because e.g. it is long wavelength, then the holes
are important, and we can design n over p devices.
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Saturated speed of the e- is in the order of 10 ps/um.

* The duration of a single-carrier pulse is given by the transit time T, of the carrier in
the depleted region. At saturated velocity it is quite short: in Silicon the carrier travel
takes =10ps/pum, that is, with wy =1+ 100um itis T,= 10ps + 1ns.

* The single-carrier pulse duration thus depends on the position of carrier generation.
Rigorously, the waveform of the current due to a fast multi-photon pulse is not the
convolution of the optical pulse with a standard carrier response: it is a more
complex computation that depends on the spatial distribution of absorbed photons.

* However, convolution with a suitable standard single-carrier response gives the
waveform with approximation adequate for most cases, at least for times longer than
the carrier transit time.

* Asimplifying and conservative approximation currently employed for Silicon PDs
assumes as standard the response to an electron that crosses all the depletion layer.

Finite width of response implies low-pass filtering in light-to-current transduction:
it’s a mobile-mean over time T, = wy/v,, , with upper band-limit 1/27, = v,,/2w,.

Note the w, trade-off: long wy is required for high quantum efficiency at long
wavelength A, short wy, for ultrafast time response. Remark, however, that this is
valid for front-illuminated junction and not with side illuminated junction

We can make an assumption: we consider the pn junction as a LP filter for the light (mobile mean filter)
with a band limit 1/Tt where Tt is the transit time of the carrier in the whole depleted region.

With this definition we are ‘complicating’ the tradeoff. The depleted region is a tradeoff between power
consumption and detection efficiency, now if we increase it, we are increasing Tt and so reducing the
BW.

As for the noise, it is thermal generation density times area times depleted region, so increasing it we are
increasing also the noise (besides the power consumption). The depleted region is a number we have to
choose depending on the application.

PD EQUIVALENT CIRCUIT

» Ip=5Sp" P, photo-controlled generator
(Sp radiant sensitivity or responsivity)

» Cpdiode capacitance (p-n junction)
» Rp diode series resistance (of the
input layer and substrate)

» R, parallel resistance of the reverse
biased junction is considered = o

REAL CIRCUIT EQUIVALENT CIRCUIT

‘ I“SDPLTé :%RL "
L

R, total Resistance Load = R-+ Rp
C, total Capacitive Load = C, + C (stray) + C, (amplifier)

1|

R circuit input resistance

the load circuit is a low-pass filter with time constant R, C;
in the transfer from detector current /, to output voltage Vp
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Nn m of the PD. At this point, the input resistance can be maximized, and so also the SNR. However,
probably it is not always good to have a high resistance. We are interested in high impedance frontend if
we want to maximize the SNR, and this is always true.

However, this is not the path to take if we want to maximize the dynamic response.

PD DYNAMIC RESPONSE

In summary, the PD dynamic response is limited: A
1. By the light-to-current transduction, with
pulse response hp(t) of finite-width T,, well  /p C, R,
approximated by a rectangular pulse.

2. By the load circuit, with &-response h,(t) of - 1(6) t
} . -
finite-width T, = R,C, u(® =z=ew (- )

The 6-response hy(t) in the transfer from light power to detector voltage results

from the convolution of the two
hp(t) = hp(t) = hy ()

Hence the width T, is the quadratic addition of the two

Tp = JTtZ +1.%= \[th +R,2C,2

For exploiting well the fast response hp(t) of the PD current, the load circuit does
not need to have much faster response, but just comparable or slightly better

TL = RLCL < Tt

As soon as we choose the detector, we fixed the transit time. So how can I minimize the RC of the circuit
to maximize the dynamic response. We want a small R to maximize the dynamic performances, but if
we do so we worsen the SNR - tradeoff between sensitivity and speed.

However, we want to maximize the speed. We want RC lower than the transit time, and the transit time
is fixed. The unknown are area and the resistance, then the saturated speed is a constant .

For a PD in planar Silicon with depletion layer w, and circular area A of diameter D
CD:ESlW_d T[:atwa'lou—m

Assuming (quite optimistically) that the load capacitance be given only the junction C,=C,

and applying the condition R;C; < T; we get

wg? 1 . 1
A<—+ thatis DS wy [——
Vsn RLEs; MVsnRLEs;

In wide-band operation the load resistance R, is small, but is not much less than 100 Q
(diode resistance = some ten Ohm and characterisic resistance of wide-band circuits
50+75Q). For exploiting well the fast response limited by the transit time, with R, =100 Q,
g5~1,06pf/cm, v, = 107 cm/s , the limit to the size of sensitive area is

D<12,5-wy
In the design of detector devices, the selected depletion layer depth w, depends on the
wavelength of interest and on the photon detection efficiency sought; it actually ranges
from 1um to about 100pm.
The area of fast semiconductor photodiodes thus is small in all cases: as w, ranges from
1um to 50um the limit diameter correspondingly ranges from 25um to 1,25mm
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In the end we get that, to have a time response limited only by the transit time and not the RC of the
circuit, the diameters must be 12,5 times lower than the depleted region, and this is not good (60 um of
diameter). If so, it is really difficult to focus the light on the detector.

CARRIER DIFFUSION EFFECTS

If a single photon is absorbed in the depleted region, it gives us a current. instead, if we are in the neutral
region, in theory we don’t have any contribution to the current, but in reality a carrier generated in the
neutral region doesn’t give us any contribution to the current if it remains in the neutral region. In fact,
it can diffuse and enter in the depleted region. At that point it acts as a carrier in the depleted region.

This eventually happens after a delay that is random.
+V,

[&—e

Case a) \J’\j/7°>

aVAVas/

. . o
Single-Carrier Response Case b) M .
Case c) t

AVAVas p

a) Carrier generated in depleted region:
short and prompt pulse

b) Minority Carrier generated in neutral ;
region that random-walks by diffusion H
and attains the depleted region: ‘

short pulse with random delay t, tp 5 t

c) Minority Carrier generated in neutral i
region that random-walks by diffusion
and there recombines:

NO current pulse t

So the response has a gaussian shape with a tail that gives the sum of all the photons absorbed in the
neutral region that with a random delay reach the depleted region.
If I'm interested in the detection efficiency, the tail is good because the detection efficiency is higher.

+V,
Response to LAY e
MultiPhoton Pulse ANA .
AN M o
N g y
[AVAVad p p
! —
n n* p*
Short main pulse
due to photons Longer and slower «tail»
absorbed in the “ 1 due to photons absorbed in
depletion region the neutral substrate
t

The shape and relative size of the «diffusion tail» are established by the
photogeneration and by the diffusion dynamic of minority carriers in neutral
regions. They strongly depend on the PD device geometry, on the material
properties in the neutral regions (diffusion coefficient and minority carrier
lifetime) and on the space distribution of the absorbed photons, hence on the
photon wavelength.

Instead, the tail is a problem if we have a high rate of pulses. With one single photon I’'m generating one
single carrier, so the single electron response gives us the probability of having a certain current depending
on where the photon is absorbed.

202



<—e [ /\\

VAV BEN-S p g

p* t

The «diffusion tail»:

increases the photon detection efficiency, by bringing to the output a contribution
from photons absorbed in a neutral region

downgrades the detector dynamic response, since the diffusion tail is definitely
longer than the prompt pulse

The time span of the tail increases with the thickness w, of the neutral substrate
and with the minority carrier lifetime, which is longer at lower doping level.

In Si-PD the tail can be quite significant, ranging from a few 100ns with thick layer
(w >100um) and low doping (=10%*/cm?) to a few 100ps with thin layer
(w=1+2um) and moderately high doping (=10%/cm3).
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PHOTOMULTIPLIER TUBE - PMT

In almost all the cases the noise of the PMT and sensor is negligible with respect to the noise of the
electronics. If so, is there a way to improve the situation starting from the fact that the noise of the PMT
is very low? Yes, we can add a gain.

VACUUM TUBE

PHOTODIODE ELECTRONICS
LOAD e
FoTSnsEsasanss Ovnt
: *\ : |
Detector Noise Circuit Noise:
(Dark-Current) very much higher than Detector Noise,

sets the limit to minimum detected signal

Detector Signal (current at photocathode and anode):
just one electron per detected photon!

We are applying the gain between the PMT and the amplifier. We are actually amplifying both the signal
and noise, so we are not changing the SNR of the PMT itself, which is however very high.

If we applying a gain we can improve the signal and at the sme time we are also increasing the noise, but
since the noise is small, even if amplified it could be negligible than the one of the preamplifier. Our goal
is to reach a noise that, amplified, is higher than the one of the preamplifier.

VACUUM TUBE

PHOTODETECTOR ELECTRONICS
"""""""""""""" ! LOAD Vi
G >103 ,l O nk —
—hv i Electron | | o R, fre
Multiplier | + ——
process | !
NOT circuitf—
........................ ; |
Circuit Noise

Primary Detector Noise
(cathode Dark-Current)

« Primary Signal (photocathode current): one electron per detected photon

+ Output (anode) current: G >102 electrons per primary electron

» Dark-current noise and/or photocurrent noise at detector output are much higher
than circuit noise, which has practically negligible effect

The gain is in the order of 1073 — 1076. Of course I cannot amplify with an amplifier, or the situation is
not changing. So we need to create a gain without adding a noise, which happens with an amplifier.
The idea is to modify the structure of the PMT.

So far we have a cathode that generates a free e- due to the impinging photon. With an electric field it
reaches the anode and generate current. now we add a dynode, which, if hit with an e- with high energy,
generates more than 1 electron. Of course, we need to accelerate the first electron to reach high energy,
so we need high voltages, from 100 to 1000V.
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Vp = from 100 to 1000 V

7
Vo)
Yo,
%

1 primary

/bz/\electron

Cathode V=0

g > 1 secondary electrons

Vy>Vp

Anode

i I cathode current
Ix= glx anode current

* A primary electron is emitted in vacuum with very little kinetic energy E, < 1eV

* Driven in vacuum by a high potential difference (some 100V), it impacts with high
energy on a dynode (electrode coated with suitable material, see later)

* Energy is transferred to electrons in the dynode; some of them gain sufficient energy
to be emitted in vacuum; g > 1 is the yield of secondary electrons per primary electron

DYNODE MATERIALS
g
, Secondary emitter coatings with ordinary yield:
7
% 40 GaP dynode,/’l * MgO Magnesium Oxide
> e * Cs3Sh Cesium Antimonide
&) e
g L * BeO Beryllium Oxide
—_ 4
05 20+ * Cu-Be Copper-Beryllium alloys
g MgOdynOde Secondary emitter with high yield (due to NEA
& i negative electron affinity, see slide 26 in PD2) :
Q
* GaP Gallium Phosphide
0 500 1000  Volt

Primary electron energy qV,

* In the normal working range up to =500V, the emission yield g is proportional to
the accelerating voltage V (i.e. the primary electron energy) g=k\Vp

* At higher voltage g rises slower and tends to saturate (energy is transferred also to
electrons in deeper layers, which have lower probability of escape in vacuum)

* Inthe linear range ordinary emitters work with g values from =1,5 to =7 and
GaP dynodes g values from =5 to =25

* GaP dynodes are more costly and delicate, require special care in operation and
their yield tends to decrease progressively over long operation times

With standard material it is linear (the secondary yeld) and then tends to saturate.
To significantly increase the gain, the idea is to use a chain of dynodes.

Drawbacks

For each dynode we need some hundreds volts of bias one paired with the other, so at the end of the
chain we have a very high voltage. For each dynode the gain is proportional to the bias voltage, and the
overall voltage is the product of all the intermediate gain.

Furthermore, the structure in the image below is a mechanical structure, the dynode must be placed to
focus the electrons from one dynode to the other, so we have to mechanically align them to have a very
good gain.

So the structure of the PMT becomes complicate because of this chain of dynodes.

205



Sketch of the Principle (example with 5 dynodes)

Dynode 1 Dynode 3 Dynode 5

/
‘ l cathode Dynode 2 Dynode 2

’A: G‘IK>> I’K
>

V< Vpg < Vpy < Vps < Vs <V,

» Electron optics (i.e. potential distribution) carefully designed to lead
the electrons emitted from each electrode to the next one

g, > 1 secondary electron yield of dynode r

» G=g; 8,8:848s overall multiplier gain

thatis, G=¢g® with equal stages g,;=g,=....=g

PMT STRUCTURES
PMTs with side-window and opaque photocathode

Anode

Reflection mode
photocathode

Incident -----
light -t

Photoelectron

Dynodes

The basic structure of Photomultiplier Tubes with discrete dynodes and
electrostatic-focusing was first demonstrated in 1937 by the RCA Laboratories;
in the following decades it was progressively improved and developed

by various industrial laboratories (RCA, DuMont, EMI, Philips, Hamamatsu... )

Moreover, a problem is that if we have a magnetic field, it could change the direction of e- and so the
gain of the system, and this is not good. So EMI are a problem for PMT.

PMTs with end-window and semitransparent photocathode

T;%nsmn'snsmmooe
PMT Basic outline e

Dynodes
. *;/\7‘ / L
Dot — — — o /4——\/~ e D :
- > A W) ) W '\ = "'
\ Photoelectron Anode : 1iid
PMT Operation sketch Focusing slctrod — ﬁi‘-’é‘- ins

1
: 777777 hpprox 10-4 Pa)
Incident Lo u
light == \ e —e—
1
A A L
[ K K
1\
A Electron mumnﬂcr Anode
Photocathode  (dynode)

blFM input
indow
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The PMT is able to detect a single photon (very high sensitivity), and the noise after the amplification is
very low. The problem is that it is bulky, fragile (made of glass), sensitive to the magnetic field.

GAIN

*  PMTs can have high number n of dynodes (from 8 to 12) and attain high gain G.
With n equal dynodes it is G = g" ; e.g. with 12 dynodes G=g*?
G=10*withg=2,2
G=10°withg=2,6
G =108 withg=3,2
* Gis controlled by the dynode bias voltage, which regulates the dynode yield g

* Asingle supply is usually employed, with high voltage V, typically from 1500 to 3000 V.
The dynode voltages are obtained with a voltage-divider resistor chain; the potential
difference V; between two dynodes j and (j-1) is a preset fraction f; of the supply V,

In order to obtain a very large gain we have to increase the bias voltage between each dynode and the
following one. To do so, we create not 12 different bias voltages, but we use a voltage divider.
The problem is that the power dissipation is very huge, which is not our goal.

The problem is that if we are extracting electrons from the dynodes to generate electrons, the biasing of
the dynodes themselves is changing because we have a current flowing in the biasing resistor. Since the
bias voltage is connected to the gain in a linear way, we are also changing the gain and the signal.

The good thing is that this happens only if we have a pulse of light.

PMT GAIN REGULATION AND STABILIZATION
* The supply voltage V, thus rules the yield g; of every dynode 9 = ksV; = ksfiVa
and the total gain G =012 -Gn = ksV1 - ksVo.....ksVy = kS 1o fu - VA

which increases with V, much more than linearly

l6=ntotnvi=ke vy

(NB: K; = k& fif,... f, is constant, set by the voltage distribution and dynode characteristics)

* The gain G is very sensitive to even small variations of the supply V, : the relative
variations of supply voltage are n-fold amplified in the relative variations of gain

dc  dv,
ac _ Vs

G Va

* Consequently, tight requirements must be set to the stability of the high voltage V,
versus ambient temperature and/or power-line voltage variations.
e.g. getting G stability better than 1% for a PMT with n=12 dynodes
requires a high voltage supply V, better stable than 0,08 %

To solve the issue of the gain we can add capacitances. When a pulse of light comes, we have the
generation of an electron but this electron flows through the capacitance and then the system goes back
to the steady state value.
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* The parameter values in the PMT operation must be carefully selected for
exploiting correctly the PMT performance. We will point out some main aspects
and call the user attention on warnings reported in the manufacturer data sheets.

* For limiting self-heating of voltage divider below a few Watt, the divider current
must be < 1 mA, hence total divider resistance must be at least a few MQ.

* In order to avoid nonlinearity in the current amplification, variations of dynode
voltages caused by the PMT current should be negligible. The PMT output current
must thus be less than 1% of the divider current, i.e. typically a few pA.

* This limit is acceptable for DC current, but not for pulsed optical signals. However,
fast transients of dynode voltages can be limited by introducing in the last stages
capacitors in low-pass filtering configurations, as sketched in the examples

k

di d, dy dy ds

The problem with having the capacitances to ground is that we want to use the capacitance on a fast
electrical pulse, and we cannot make fast capacitances with 3kV of bias voltage, because on one side the
capacitance has ground, on the other side a huge voltage, so it cannot be a fast responsive capacitance.
So their arrangement must be changed.

d; d, d; dy ds dy d; dy

* Space-charge effects may cause nonlinearities in the amplification of fast pulsed
signals. A high charge of the signal itself can significantly reduce the electric field
that drives the electrons: the higher is the pulse, the slower gets the electron
collection. The pulse shape is more or less distorted, depending on its size

* Nonlinearity can occur also if the voltage signal developed on the load is high
enough to reduce the driving field from last dynode to anode

* Magnetic fields have very detrimental effect: the electrons traveling in vacuum are
deviated and the operation is inhibited or badly degraded. With moderate field
intensity, magnetic screens (Mu-metal shields wrapped around the vacuum tube)
can limit the effects; with high intensity fields PMT operation is actually impossible

* PMTs are fairly delicate and subject to fatigue effects and their operation is
prejudiced by mechanical vibrations

Now each capacitance has the bias voltage just between two dynodes, so it can be fast. However, the
issue related to the magnetic field is still there.

SINGLE ELECTRON RESPONSE - SER

The gain is not constant; from the cathode we have one electron, which goes to the dynode, and the
dynode generates a number of e- that every time changes, it is a statistical number of electrons generated.
So the gain of each dynode changes a little. Putting all the variations together in a chain, the SER can
change a lot in terms of intensity.

However, the detector is still very fast (ns), much faster than a photocathode.
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The PMT output is superposition of elementary current pulses that correspond to
single electrons emitted by the cathode, called Single Electron Response (SER) pulses.

SER current pulses are fast (a few nanosecond width) and fairly high (pulse-charge Gq
from 10° to 10° electrons). They are remarkably higher than the noise of fast circuits;
with PMT weakly illuminated they are well observable on the oscilloscope screen and
each of them corresponds to the detection of a single photon.

The SER current pulses observed have all equal pulse shape, but randomly varying
pulse-amplitude; i.e. G is not constant, but statistical

+ The random fluctuations of G are due to the
statistical nature of secondary electron emission

* Since the SER charge is much higher than the
minimum measurable detector pulse*, the statistical
distribution p(G) of the gain G (probability density of
G value) can be directly collected by measuring and

t classifying the pulse-charge of many SER pulses.

Current

0 Time 5 ns

Applying the Ramo theorem, we have to ground all the dynodes, and the reference electric field is only
between the last dynode and the anode. However, if the gain is not constant, the signal also is not
constant. This gain applies both on the signal and noise.

Fluctuation of the signal is like having a new source of noise that we want to avoid. We can manage this
noise like if we have a system that amplifies, and the noise at the output is the noise at the input times
the gain squared. If the gain is changing, we have to add a factor, the excess noise factor F, which takes
into consideration the fact that the noise is not constant.

Statistical distribution of the PMT gain

p AN = relative number of SER pulses observed
with charge Q in the interval gG + gAG/2

> 1
G - AN N _
é : p(G) = G probability density of G
1

2 1 R
3 Mean gain G
3 ; ; 2 ¢ _ 77 2
2 I Gainvariance ¢ = (G -G) =62~ (G)
Q 1

& ! >

G Gain G

The plot above sketches the typical appearance of the statistical distribution
p(G) of the PMT gain G.

For different PMT models and different operating conditions (bias voltage
distribution on dynodes; temperature of operation; etc.) remarkably different
p(G) are observed. The distributions are roughly akin to gaussian, but skewed
toward high G values.

The main parameters to be considered for analyzing the PMT operation are

2
. ~ . . . . 7 g,
mean gain G , gain variance og2 and relative variance vZ = (G,gz
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* Emission of primary electrons from cathode is a process with Poisson statistics, i.e.
mean number N, , variance aﬁ = N, and relative variance vl', 2—2 = i

= Emission is followed in cascade by statistical multiplication with fluctuating G

* The mean of the cascade output is N, = N, - G (two independent processes)

* The Laplace theory of probability generating functions shows that the relative
variance v,? of the output of a cascade is sum of the relative variance of every stage
in the cascade divided by the mean value of all the previous stages. In our case:

2 2 2
a, v 1 v 1
2 _ U _ 2 G _ G _ 2
=L= = =—(+
WENETR TN, TR T, Np( va)
* The variance g thusis

—2 —2 —2
of = NjG vi=N,G (1+vd) =0} G (1+vE)

In conclusion, the PMT :
1) amplifies the input variance by the square gain G2, like an amplifier and
2) further enhances it by the Excess Noise Factor F due to the gain fluctuations

—2 A 2

The result is that, if we have some dynodes, the final variance of the gain is the variance of each single
dynode times the excessive noise factor. Normally, F = 1 in a PMT.

+ A PMT amplifies by G2 the input noise like an amplifier and further increases it by
the Excess Noise Factor F: o2 = 0'5 -G*-F

*  We will see that it is F £ 2 for most PMT types and F is close to unity for high quality

PMT types. The factor of increase of rms noise is always moderate F <1,4
and often near to unity. Reasonably approximated evaluations can be obtained
by neglecting the excess noise, i.e. with F=1.

* As modern alternative to a PMT, one could propose a vacuum tube photodiode
coupled to a high-gain and low-noise amplifier chip, possibly with amplifier chip
inside the vacuum tube. It would offer practical advantages: more simple, rugged and
compact structure, lower operating voltage, etc..

* In fact, a PMT outperforms such «photodiode-with-amplifier-inside» by detecting
optical signals smaller by orders of magnitude. We can better understand the matter
by gaining a better insight about how these devices work.

One idea could be to include an amplifier directly inside the device to obtain a better amplification
without the F problem. The thing is that the good thing about PMT is how the amplification is made
with dynodes.

Without any signal, the amplifier has a certain noise at the output, which is not 0. The noise of a PMT
at the output if we have 0 signal we have no noise due to the amplification (of course we would have the
noise of the cathode, but we are dealing with amplification noise).

So in this way we can get a very high gain without adding significant noise.
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* In the amplifier a signal gains energy from the power supply by modulating the bias
current in transistors, which must be active all the time. The amplifier noise sources
are always active (shot noise of transistor bias current; Johnson naoise of resistors)

* Ina PD-amplifier combination it is the amplifier noise that sets the limit to the
minimum measurable signal, since it is much higher than the photocathode dark-
current noise

* In a PMT, the electrons of the signal gain energy directly from the voltage supply:
the bias voltage accelerates them and the kinetic energy gained is exploited in the

impact to generate other free electrons. There is no bias current in the multiplier
chain, the current flows only when electrons are injected from the cathode.

* Ina PMT there are no noise sources in the dynode chain; the minimum signal is
limited by the dark-current noise and/or the photon-current noise at the cathode.

* The cathode noise is indeed slightly increased by the gain fluctuations in the dynode
chain, but in practice this is always a minor effect and often it is negligible.

DYNAMIC RESPONSE OF PMTs
PMT response to a single photon

is(t) SER current pulse
- i
Photon § i\ T, pulse width
arrival s i
’\’L\ 8] E - pulse barycenter
i _-
0 Transit Time t, Etb time t
Transit Time distribution
Py (ts)
1
= e e PY .
9 G W T;transit time jitter
8% —E—
e Q i
Q i
}b =%, Transit time t,

The one in the image is the single electron response of a PMT. We notice that there is a delay between
the peak of the single electron response and the photon arrival. This is not strange, because the anode can
see the electrons only when they reach the last dynode, and this is the reason for the delay.

We are not concerned about the delay because it is an offset in time of only few ns, and already connecting
with a cable the device to the PS generates ns time of delay.

The problem is that the offset in time is not always the same, it is a jitter that can depend on the trajectory
of the first electron to reach the dynode.
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» Differently from vacuum tube photodiodes, in PMT the rise of a SER current pulse is
delayed (from =10ns to some 10ns dependent on PMT type and bias voltage) with
respect to the photon arrival. The dynodes electrostatically screen the anode, so that
only electrons traveling from last dynode to anode induce current (Shockley-Ramo
theorem).

The PMT transit time t, is defined as the delay of the pulse barycenter.

* The transit time £, randomly fluctuates from pulse to pulse, with a transit time jitter
T; (full-width at half maximum FWHM of the t, distribution) from a few 100ps to
a few ns depending on PMT type and bias voltage. T; is due to the statistical dispersion
of the electron trajectories in the first stages of the multiplier.

* The SER pulse width T, (FWHM from a few ns to various ns, depending on PMT type
and bias voltage) is always wider than the transit time jitter: T, = 5 to 10 times T, . It is
due to the statistical dispersion of the electron trajectories in all the multiplier.

* T, has very small fluctuations, practically negligible

In the real world, we have in the single electron response there is the convolution of two effects. Firstly

PMT response i,(t) to a multi-photon &-like light pulse:
derived from 1) SER pulse waveform and 2) transit time distribution

w(® = [ o) it~ )ty = py <1,
(1]

Single-Photon is(t) i -
jval _ N w
amm‘\,l’\ SER (normalized) s
0 't time t
i
t i Ti i T.<<T
Py (ts) Transit Time %i&; w
distribution it
i Transit time t,
Multi-Photon '
arrival ipft) i
: E T, = /TMZ, T2 =T,
:\\/,L:]%N\ S-response (normalized) ! 4 i
0 'tb time t

the real single electron response, when we consider that is no jitter on the transit time, then this electron
response will move on the left or right depending on the trajectory of the electron for each single pulse.
If we convolve these two effect we get the real electron response. The good thig is that the jitter of the
transit time is much smaller than the ideal single electron response, so we don’t notice any problem on
the jitter.
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6-response (normalized)

ip(t)

R T Lt

=%

* The &-response is a convolution /i, = p,*i, hence its FWHM T, is quadratic sum of
FWHMs T, and T; of the components

— 2
T, = /T\§+Tj

* since T; /T, is small (from 0,1 to 0,2) the width of the 8-response is practically equal to
the SER current pulse width [ 1/7\*] .
T, = IW[1+E(,‘,,—) ] =1,
* The finite SER pulse width establishes a finite bandwidth f, for the PMT employed as
analog current amplifier ‘ 1
=T,
(the coefficient k, is from =3 to =10, depending on the SER pulse waveform)

SNR AND MINIMUM MEASURABLE SIGNAL

Multiplier LP Filter
e Anode Bandlimit

GMF T O‘I>_ A
md 3
Sie C i R, Sir " F NKar
<4 Tr

* n,photoelectron rate = /= n,g photocurrent

Q.

Photocatho

Sip

il—@—

III—@—
I

|||-—

* npdark electron rate = Ip= npq cathode dark current

* n,electron rate due to photon background = /,= n,g photon background current
* ng=np+n, total background electron rate = Iz= ngq total background current
Noise sources :

> at cathode: S;,=2ql, =2g°n, photocurrent noise, increases with the signal

» at cathode: S;z=2ql; =2g°ngz background noise, independent from the signal

» at anode: resistor load noise S;; and preamplifier noise S;, and S;z

Let’s deal with S/N and minimum measurable signal in the basic case:
constant signal current /, and low-pass filtering (typically by Gated Integration)

We have the current generator of the cathode on the left, then the current noise of the cathode, then the
gain with the excessive noise factor, the load, the noise spectral density of the resistance and noises of the
amplifier. Then we have a LP filter to limit the BW of the system, if the amplifier is ideal.

We will consider the photon electron current, which is the number of electrons times the charge of the
electrons. We count the number of photons because the current is so low we can do this. Since we have
to compare signal and noise, we will count the number of electrons also for noise.

With a photosensor we have to add one more noise; we have the current noise, voltage noise, noise of
the cathode (shot noise); but in this case the signal has a fluctuation, a Poisson one, so we have signal

associated noise. It is the first time that the noise is directly related to the signal.

Rl and Cl give us a tau, but if the pole is much higher than the LP filter at the end, we can neglect the
filtering action of R1 and Cl. Of course we neglect only the filtering action, not the noise..
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Multiplier LP Filter

Anode Bandlimit
G*F T

RL Siel I: T ;ISZ I/TF
F

Photocatho

e}

Sip

S\'B

iI—@—
I—o—&
I

I

We consider cases with wide-band load, i.e. with 1/4R,C, >> f¢, such that
a) the filtering effect of C, is negligible

b) the circuit noise can modeled simply by a current generator

Spa
Sle —SLAJFSLRJF;

L
which can be referred back to the input (at the photocathode) as S;,/G2F

Multiplier LP Filter
Photocathode
Anode Bandlimit
é é [ G*F f I
@ Sie é
J_ _|_ | G2r R =R
L Ll L ke Te

We want to place all the sources of noise in only one single current generator because we want to input-
refer the output noise. If so, we can study the problem at the cathode level.

‘We can model noise x as shot noise, even if it is not shot noise, this because all the other sources of noise
are shot. To do so, we can create a current that is the spectral density divided by two times the charge. It
is a ‘fake’ current. at this point we have only shot noise on the left, and we can compare signal and noise,
directly comparing the current of the signal and of the noise.

Multipl'ler LP Filter
Photocathode
Anode Bandlimit
é é é G-F fe
Sie
] leFx M ALY
4 L L T

* The circuit noise §;, can be modeled by a shot current at the anode:
I. = Sie/2q  with electron rate n, = I,/q = S;./2q°

*  With wide band preamplifier and low resistance R = few kQ the circuit noise typically is
\/Sie = 2pA/VHz or more. The equivalent shot electron rate is n, = 10** el/s or more

* Referred to input (cathode), the circuit noise is modeled by a shot current with reduced
electron rate n, /FG?. For instance, with G= 10° itis n,/FG?=100 el/s

* The circuit noise referred to the input added to the background noise S;;=2q/z=2g°n,
gives the constant noise component (i.e. NOT dependent on the signal)

2ql,

Sig + —=— Sie TF —2q (nB+GZF)

= 2({]3 +—=—
In a lot of cases, the noise associated to the anode is negligible with respect to the noise associated to the
dark current, to the signal and to the background noise, which are the sources of noise we have at the

cathode level. All these can be modelled as shot noise, and we can lump them in one single current
generator.

So I have the signal, shot noise associated to the signal and shot noise independent from the signal. Since
the gain of the PMT is high, I can neglect the independent shot noise, but this is true up to a certain point;

in fact, also PMT has noise (dark current and background) that is independent on the noise, so we would
still have the same problem.
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I\/Iultipl'ler LP Filter
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* The role of the circuit noise is assessed by comparing it to the constant noise source of
the PMT, the background noise §;3=2ql5=2q°ng

* The background electron rate at the cathode ng; may vary from a few el/s to a few
10° el/s, depending on the photocathode type and operating temperature and on the
background light level (see Slides PD2)

* In most cases of PMT application it is ng >> n,/GF : the equivalent electron rate
n./G’F is totally negligible with respect to ny, the circuit noise plays no role

* In cases with moderate gain G and/or very low dark current the circuit noise
contribution may be significant and is very simply taken into account, by employing
the resulting density of constant noise component in the evaluation

MEASURABLE MINIMUM SIGNAL

For the sake of simplicity in the following computations we consider:
a) negligible circuit noise. Anyway, we know when it must be taken into account
and how to do it, by considering an increased constant component of noise.

b) negligible excess noise, i.e. F=1. Anyway, cases with non-negligible F > 1 can be
taken into account simply by introducing the factor VF to decrease the S/N and
increase the noise variance and the minimum signal computed with F=1.

Multiplier LP Filter
Photocathode Anode

Bandlimit

¢’ fe
& i e i RLJ%_ o L

S I, ~ I,

N Swfr+Sifr  J2al,fr + 2qlsfr

The minimum signal /, ,, is reached when S/N =1 : we will see that the result
markedly depends on the relative size of constant noise vs photocurrent noise

Sip is the noise associated to the signal, Sib is the noise independent of the signal, and it is shot noise due
to dark current, shot noise of the background and not shot noise associated to the amplifier divided by
the gain. But we can always take the total spectral density divided by 2*q to get an equivalent current.
We notice that the current Ip at the top of the SNR is also at the bottom of the ratio.

We can solve this equation for a SNR = 1 to retrieve Ip (Ib is given from the data). On the other side, we
can make some hypothesis to be verified. If the final current is so high that the shot current associated to
this current is much higher than the term with Ib, I can neglect the term with Ib and the equation is easier
to be solved. On the other side, if the final background is much higher, Ip at the denominator can be
neglected, and I’m in the classical condition with signal at the top and noise at the bottom of the SNR.
Then I have to verify if the hypotheses are correct.
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The drawback of making the hypotheses is that if we do the calculations and then we get that they are
not consistent, we have to redo the computations.

Minimum signal limited by photocurrent noise
We are in the case of negligible background noise, so we completely remove the part that is independent
on the signal because we suppose it is not dominant.

* The simplest extreme case is with negligible background noise: only photocurrent
noise matters. With noise band-limit fr= 1/2T, (Gl filtering)

__ b

 LTe  |LTe

= = | 2=2= T, =./N
L JahT; a VPF Vi

S
N

N, = n, T¢is the number of photoelectrons in the filtering time T .

* In fact, the S/N can be obtained directly from the Poisson statistics of
photoelectrons: with mean number N, , the variance is 0p2= N, and

S N N
_——= —p = —p = Np
N ap Np \}

* Remark that in this case the noise is NOT constant, independent from the signal:
as the signal goes down, also the noise goes down!!

We find that the SNR is proportional to the rate of photons time Tf, that is the number of photons we are
reading with our gain.
np (I/q) is a rate, and Tf is a time, so their product is the total number of photoelectrons I get, Np.

But the rate times a time is a total number of photons.

We are dominated by the shot noise of the signal itself, so by the statistic of the signal itself. If I'm
acquiring n photons, n is the signal. Since the light is a Poisson process, if I acquire n photons, its variance
is n, so the square root of N is the SNR. This is another way to see the same thing.

The strange thing is that the value sqrt(Np) is not constant.

For a SNR = 1, which is the minimum signal we can detect?
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We write the same equation of before, and Nmin = 1 if we are dominated by the statistic of the signal, so
it is one photon (or a rate 1/Tf).

* By making lower and lower /,, when S/N = 1 the minimum signal Ip, min-p 1S reached

S
(7)o =1 =

* The minimum measurable photocurrent signal /, ., corresponds to just
one photoelectron in T, the filter weighting time:

q 1

Ip,min -p = T_ np,min -» = T_F Np,min -p = 1
F

I

; T,
pmin-p'F
q = an,min -p TFJNp,min —-p

* Observing the complete S/N equation

s I I,Tr n,Tr N,

N \/qupfF+2qIBfF .\/quTF+CIIBTF \/inF+nBTF \/Np+NB

we see that the background noise is truly negligible only if I5<< ly for any /, down

to the minimum /,, ., ,, i.e. only if
q 1
I, < n, K — Ny <1
T, T,

The plot is in log scale, so the SNR is the distance between the two curves, hence a SNR = 1 is where the
blue and red curve cross.

N. 102+

Log scale

Logscale |

T
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10 10 N,=n, T
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Signal measured by charge, in terms of number of photoelectrons N,=n, T,

What if the background noise is not negligible?
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Minimum signal limited by background noise

* The opposite extreme case is with negligible photocurrent noise: only
background noise matters. More precisely, it’s the case where the limit current
lp = 1, min-p cOMputed with only the photocurrent noise is much lower than the
background current /g

q 1
IB>>T— nB>>T—

F F

* There is now a different minimum signal I, ,,;,.5 limited by the background noise

qlg _ /"B
!p,m‘m73= i_p Npmin-B = E Np‘min75,: /NE

* In intermediate cases both noise components contribute to limit the minimum
signal, which is computed from

_ N, p,min

S . 1
2= =1 2" order equation that leads to N, ,;, = = (1 + /1 + 4N;)
N NBp,min ’ 2 -

(NB: the other solution is devoid of physical meaning)

If Nb is no more negligible, but much higher than Np, it is the dominant one. Consequently, Np =
sqrt(ND), if we are for SNR = 1.

If neither the background nor the photocurrent noise are dominant we have to solve the complete second
order equation. The good thing in making an hypothesis is that we can verify if it is correct or not, while
with just the solving of the equation we get a number, and we don’t know if it is correct or not.

N. IN
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HIGH background noise 4/ Ngq
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Total Noise 2
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Signal charge, in terms of number of photoelectrons N,=n, T,

Sqrt(NDb) is a constant because it is not related to the signal. Increasing the background we are shifting
the red curve upward, making it dominant over the photocurrent noise.
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PMT DEVICE STRUCTURES
Can we improve the device more?

CONTINUOUS CHANNEL MOLTIPLIER CCM

I take a tube and I make a coating of the inside with the material of the dynodes. At this point, as soon
as a photon exits the photocathode and enters the tube, we are not losing any generated electron, so
maybe the efficiency of the system is better.

(NB Sketch not to scale, for clarity the multiplier diameter D is enlarged)

Photocathode
Anode

¢

L Vﬂ
In order to get PMTs more simple, compact, robust and less sensitive to mechanical
vibrations, minitubular electron multipliers were introduced (in the late years 60’s)

* A special glass capillary tube with D < 1Imm, called Continuous Channel Multiplier
CCM or Channeltron, is at once voltage divider and electron multiplier; the inner
surface is chemically treated and converted in a semiconductor layer with high
resistivity and secondary electron emission yield g = from 1,2 to 3.

* For a given applied voltage the gain depends on the ratio L/D. As L/D increases the
number of impacts increases, but the yield decreases because the impacting electron
energy decreases. Maximum gain is attained with /D = 50

* Gain G from 10° to 10°is attained with applied voltage in the range 2 to 3kV

* No need to focus electrons within the multiplier, but the electron optics from cathode
to multiplier input must be carefully designed to get good collection efficiency

The problems are multiple. Firstly I have to focus the light inside the tube, the electron has to enter the
tube and the diameter and the tube sometimes is not big.

Moreover, if I have an amplification, from one photon we generate an e- that enters the tube and it
multiplies. At the end of the tube I have a lot of e- with an extremely high energy, because they are all
accelerated. Furthermore, I apply the total bias voltage at the end of the tube, I don’t have anymore the
voltage divider.

However, high energy e- can create ions due to impact ionization, and the ion has an opposite charge
compared with the e- and goes back in the opposite direction, impacting in the tube and generating other

e-, so creating a positive feedback, which is increasing a lot the noise.

The idea, instead of taking a straight tube, to use a curved one. Thus a generated ion will impact the tube
on a small time in a small portion, so the feedback is limited in time.
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Moreover, the tube is very small and we are generating millions of electrons for each photon. Since we
have a lot of millions of e- in a small volume, we have space charge that is shielding the electric field, and
the only solution we have is to reduce the amount of charge. Of course we cannot do this reducing the
gain, because the goal is to have a high gain. So we have to reduce the number of photons - this
architecture works if we have few photons.

a) Straight channel CCM b) Curved channel CCM

= D (ﬂn

In order to exploit CCMs it is necessary to neutralize the effect of lon Feedback.

* In the last part of the channel the density of energetic electrons is high and
creation of free heavy ions (ionized atoms) by collision with residual gas molecules
(or with the wall material) becomes probable.

* The free ions drift in the field and by impacting on the wall cause a strong emission
of electrons. If the impact occurs near the channel input the emitted electrons
undergo all the channel multiplication.

* This is a positive feedback effect, which enhances the current amplification in
uncontrolled way and may even cause a self-sustaining breakdown current in the
multiplier.

* The effect is avoided by bending the axis of the multiplier tube. Due to the large
mass and small charge, a free ion has small acceleration in the electric field and its
trajectory is almost straight; the ions thus impact in the last part of the channel,
hence the emitted electrons undergo undergo a much lower amplification

MICRO-CHANNEL PLATE MLTIPLIER — MCP

Every single channel has the same problem as before of the space charge, but all the photons generate
electrons spread over the MCP, so the number of electrons of each tube on average is the total number of
electrons divided by the number of tubes, so we can have a small charge effect for each tube but also
having a total detector that can manage a very high number of photons.
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* For overcoming the CCM limitations, the multiplier concept evolved (in early years 70’s)
to the MicroChannel Plate MCP, implemented with sophisticated glass technology

* An array of many thousands of multiplier microtubes is embedded in beehive structure
into a plate. All channels are biased in parallel with the same high voltage V,,, applied
via metal electrodes deposited on the two faces of the plate.

* The MCP has a planar geometry, well matched to a planar end-window photocathode;
focusing of photoelectrons on the multiplier is simply provided by a high voltage from
cathode to multiplier input (proximity-focusing geometry )

On the MCP, one electron can be emitted exactly horizontal to the tube and avoid any hit with the walls
of the tube. This is not possible with the PMT. So if we change the number of impacts, it changes the
gain. So for low noise applications the PMT is still better.
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Dark current is lower in CCM-PMTs than in dynode-PMTs, which collect also electrons
from auxiliary input electrodes contaminated in the photocathode fabrication

The excess noise factor F>2 is significantly higher than dynode-PMTs, because the
statistical dispersion in the electron multiplication is clearly greater

The inner layer resistance is in GQ range, the current in this voltage divider is low <1uA,
hence for avoiding nonlinearity the mean output current must not exceed a few nA.
This sets a strict limit to the product of mean photon rate and PMT gain.

The amplification of a pulse signal leaves a charge on the multiplier surface near to the
output. A high charge modifies the electric field, impairing the amplification of the
following pulses during a long recovery transient (discharge through the inner layer
resistance, with time constant of milliseconds or more). To avoid this, the product of
multiplier gain and input pulse charge and/or repetition rate must be limited

Strong nonlinearities due to space charge may occur for high pulses and high gain

In conclusion, CCM-PMTs are

a)

b)

well suitable and provide very good performance for detecting pulses with moderate
repetition rate and small size (down to single photons).

NOT well suitable for many-photon-pulses (e.g. for scintillation detectors of ionizing
radiation) and for stationary light intensity.

* MCPs are implemented with small diameter D from 50um to 5um and the useful area
(sum of the channel input sections) is =50 to 60% of the total plate area

* Each channel operates as an individual miniaturized CCM: the gain is optimized still
with L/D = 50

* To avoid ion feedback by bending the channel axis is not convenient for MCPs; the
same principle is exploited by two MCPs with inclined channel axis, mounted in series
with channel axis of the first and second MCP forming an angle
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Most of the limitations that plague CCMs are relaxed for MCPs with illumination
distributed on the cathode because:

a)

b)

Electrons emitted from the same position of the cathode do not enter all in the same
microchannel; they are distributed over a group of facing channels in the MCP.

The perturbation of the voltage distribution in a channel affects the multiplication
and collection of electrons just in that channel and closest neighbors, not farther.

It follows that:

1)

2)

the limit to the output mean signal current is much higher; it is a small percentage of
the total bias current of the MCP, not of a single microchannel

also many-photon optical pulses are correctly linearly processed, since the pulse
photoelectrons are multiplied in parallel in different microchannels

The statistical gain distribution of MCPs is similar to CCMs, significantly wider than for
dynode-PMTs, with excess noise factor significantly higher F>2

The dynamic response of MCPs is remarkably superior to that of dynode PMTs.

The transit time T, and its jitter T; are remarkably shorter; in fast MCP types they are
reduced down to T, *1ns and T~ a few 10ps.

Also the SER pulse-width T,, is shorter, down to T,,= a few 100ps.
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AVALANCHE PHOTODIODES

IMPACT IONIZATION IN SEMICONDUCTORS
O A free electron drifting in the field gains
kinetic energy AE, = En — Ec

QO Part of AE,, is transferred to lattice
vibrations by scattering events

“i } U Because of energy and momentum

? AE,=E,-E. conservation, a ionizing collision can

@ occur only when

c

2 3 AE, > 1,5E;

b O Until reaching such AE, the carrier

@ AE,= EqE, ) L )
travels without ionizing. The carrier

multiplication thus has a dead-space; it is
a discontinuous statistical process

Electric Field F, U There is inherently a positive feedback

— i
loop in the process, because also holes
n-side can ionize by impact
X[ a cascade of ionizing collisions produces
® Electron avalanche multiplication of carriers
o Hole

In the image we have the CB and VB of a pn junction with an applied electric field. The idea is that if we
increase a lot the electric field E, the electron in the CB can be accelerated by E ad if E is high, the energy
the electron gains is so high that it can create another e/h pair due to impacts with the crystal. It is similar
to the dynode in the PMT.

In order to create an e/h pair we need to gain an energy that is not the energy gap of silicon, but it is at
least 1.5 the energy gap. This is because silicon is indirect gap.

If we gain an energy higher than this value, we can create a new e/h pair. So we are generating another
e- that sees the same electric field, will be accelerated and eventually can create another carrier. But we
are also generating an hole that goes in the opposite direction and can generate a pair. So it is a positive
feedback mechanism. So it seems that from 1 or few electrons we can generate a lot of carriers, so a lot
of current and a lot of signal.

However, we have a feedback, and we don’t like this because we are adding noise (excessive noise factor).
Moreover, theory of the APD is very complicated. Even if we have 1 electron that gains a lot of kinetic
energy, and it reaches 1.4*Eg, nothing happens. So the process to generate a e/h process is not
continuous, we need some time to gain energy to create new e/h pairs. So it is a discrete process. Having
a discrete process makes it difficult to be analyzed and create a related model.

CONTINUOUS MODEL OF CARRIER MULTIPLICATION

We have to create a continuous process from a discrete one. If we are observing our phenomenon from
a certain distance, with a time or space scale that is big enough to distinguish each ionization process, we
can survive with an analog approach.

Since the ionizing process happens in the depleted region, we have to avoid thin depleted region. At this
point the idea is to define an alpha, the ionizing coefficient for electrons, the probability density of
ionization in the carrier path, and beta for the holes. It is the probability for an e- to create another e/h
pair after a dx space. So we will have a probability lower than 1 that will increase with the energy
acquired.
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Starting from this simplification, we can define also the mean path between ionizing collisions.

The problem is that we have to add also k, which is the ratio between beta and alpha. It changes as a
function of the material, it is almost 1 for indium-gallium-arsenide. Depending on k, the excessive noise
factor completely changes.

* The carrier multiplication can be analyzed with a continuous statistical model, based
on the average in space of the true discontinuous random process.

* The continuous model provides a good approximation if the width of the
multiplication region (high-field region) is definitely larger than the mean path
between ionizing collisions. The model is inadequate if the high-field region is very
thin, i.e. for width smaller than or comparable to the mean path between collisions.

* The model considers the probability of ionizing impact of a carrier as continuously
distributed in space (i.e. it considers the average of many trials of carrier
multiplication started by a primary charge).

* The ionizing coefficients a for electrons and B for holes are defined as the
probability density of ionization in the carrier path; that is, for a carrier traveling over
dx the probability of producing impact-ionization in dx is

o dx for electrons and Bdx for holes
* The mean path between ionizing collisions thus is
L,=1/a forelectrons and Lg=1/B for holes

* The features of the multiplication process strongly depend on the relative intensity
of the positive feedback, hence on the value of k = B/a, which is different in
different materials: k<<1 in Silicon, k>1 in Ge and k=1 in GaAs and other IlI-V

Tonization coefficients in silicon

Moreover, alpha and beta change as a function of the electric field. But in a pn junction the electric field
is not constant in the depleted region, so alpha and beta change as a function of the position of the electron
in the electric field.
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* «and B rapidly increase with the electric field F,. They can be described with good
approximation by a=aoexp(f% and  g=p,exp(-222
In Silicon a, = 3,8 106 cm™, F,, = 1,75 10 6 V/cm; B, = 2,25 107 cm?, Fpo=3,26 106 V/cm

* kis=0,1 at high electric field F, and as F, decreases k strongly decreases (because the
dynamics of valence-band holes and conduction-band electrons are different)

* aand B markedly decrease as temperature increases (because stronger lattice vibrations
drain more energy from carriers in the path between ionizing collisions)

Moreover, alpha, beta and k change also as a function of the temperature.
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CARRIER MULTIPLICATION
We can use a PIN junction, so that the electric field is constant, so we can understand the current of e-
and h in any point of the device.

* Even employing the continuous model, the complete mathematical analysis of the
avalanche multiplication of carriers is quite complicated and will not be reported.

* However, the basic features of avalanche diodes can be clarified by analyizing a simple
case. In a PIN junction with uniform and constant field higher than the impact
ionization threshold, let us consider the stationary avalanche current due to the
injection from the p-side of a small primary current of electrons j;

Note that:

F 1. e-h pairs are generated, hence there are
p-side n-side both electron and hole currents, even in
case the ionization by holes be negligible
(i.,e.p=0)

e P , 2. The total current is constant j, =j, +j,

» /)ﬂ\ . j 3. The p and n carriers of the avalanche
iy P ~dp m form a dipole-like mobile space-charge

) . (mostly p at p-side, mostly n at n-side)
that adds a field opposite to the junction

field (due to the fixed ion space charge)

We are interested in the total current in the device, not in the one of the single electron or hole.

We have to distinguish e- and h because as soon as the e- goes to the right, it’s creating new pairs and so
new electrons and holes, and the same for holes in the left. So to the right, the number of e- increases,
while on the left the number of h is increasing. As soon as we have a lot of negative charge on one side
and positive on the other, we are creating a dipole, and so an electric field that is in the opposite direction
than the original electric field. Thanks to this charge distribution we will understand the final current in
the device and also why the current is not diverging.

We are lucky since we have the equations. The total current in the device is the input current (original
one) divided by 1-Ii, where Ii is the ionization integral. The formula holds if alpha = beta, so k = 1 (GaAs).

In the simplest case a =B (e.g. in GaAs) the equation is simply and we obtain:

i = Ji _ i
" 1—fuwa(x)dx 1-14
li = JO a(x)dx is called ionization integral and has a clear physical meaning:

it is the probability for a carrier to have an ionizing collision in the path from x=0 to x=w

The current j,, is the primary current j; amplified by the multiplication factor M

i 1-1

M
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This is the real formula, not a simplification. The ionization integral is the integral of the probability of
the carrier to create ionizing impact in dx integrated from 0 to depleted region, so is the total probability
of a carrier to generate one e/h pair in the whole depleted region.

Also in this case we can write the gain, called multiplication factor M. The problem is that M can diverge
if Ii = 1. So if we generate at least one electron in the depleted region, the process is diverging. Infinite
gain is not good because it is associated also to an infinite noise.

In order to have not infinite gain, the ionization integral Ii must be smaller than 1. Moreover, the formula
is working for GaAs, but what about silicon, where alpha != beta, we have the following.

In cases with a # B the equation can still be integrated and the results can still be written
in the form

Ji i 1
) M=t
i ji 11

but the ionization integral /; is now the integral of an effective ionization coefficient «,

2, = aexp [— | “la- E)d€]
0

so that in this case
w w w
I; = f ae(x)dx=f aexp[—J’ (a—ﬁ’)df] dx
0 0 0

Alpha is an equivalent alpha, and the ionization integral Ii can be computed as before, just alpha is
changing. We will never compute alpha or i, we will stop on M.

As said, M changes a lot as a function of the bias voltage. In fact, if we change the bias voltage we
change the electric field. Moreover, M also depends on temperature.

* The ionization integral /;in any case strongly depends on the applied bias voltage
V, and on the temperature T

* [;is nil until the field F, produced by V, attains level sufficient for impact ionization

* Computations and experiments show that the rise of M gets steeper as the high-
field zone gets wider. This is quite intuitive, since a wider zone corresponds to a
higher number of collisions, which enhances the effect of the increased impact
ionization probability due to an increase of the electric field

There is also another problem, since M gets steeper as the high-field zone gets wider. As soon as we
increase the depleted region to collect more light, M gets steeper.
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AVALANCHE BREAKDOWN
M can be divergent, and since alpha depends on the bias voltage, we can define the breakdown voltage,
which is the bias voltage at which the Ii = 1 and M diverges.

* When the applied bias voltage V, reaches a characteristic value Vg, the
lonization Integral I; = 1 and, according to the equation, M =2 o and j,, 2

* V; is called Breakdown Voltage; it is a characteristic feature of the diode, ruled
by the distribution of the electric field F, and by the dependance of @ and B on
the electric field F, and on the temperature T

* Vgincreases with the temperature T. The increase is different in devices with
different field profiles. It is anyway strong, some 0,1% per K degree.

Since the Vb has Ii = 1, and Ii depends on alpha, and alpha depends on temperature, also Vb depends on
temperature.

In the real world it seems that we have either no current or infinite current. But it is strange to create
something with infinite current, so we have to manage a formula that deals with infinite current and the
real world where it doesn’t exist. So we have to deal with the space charge effect, according to which we
will reach a steady state value where the current is no more diverging.

* Inreality, the breakdown current is not divergent and flows without requiring a primary
injected current. In fact the current is self-sustaining, because of the positive feedback
intrinsic in the avalanche ionization process.

* What keeps finite the avalanche current is the feedback effect due to the mobile space
charge. The effect is negligible for V, < V; (hence it is not taken into account in the former
equations), but it is enhanced by the current rise at V, > V; and reduces the electric field
that acts on the carriers. The multiplication thus stabilizes itself at the self-sustaining level.

* For V, > Vg the avalanche current /, increases linearly with V,, so that an avalanche
resistance R, can be defined: R,=A4V, /Ai,.

* Infact, AV, produces a proportional increase of the electric field, which increases the
impact ionization probability, hence the avalanche current. In turn, the current rise
produces an increase of the space charge, which counteracts the effect of AV, . The
current thus rises until it brings back to self-sustaining condition the avalanche
multiplication; that is, the current increase Ai, is proportional to the voltage increase AV,.
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AVALANCHE PHOTODIODES

We want to be close to Vb but below it, so that Ii is not 1 and the current is not diverging.

The idea is to create a device that can work at a bias voltage below the breakdown in a stable way from
the bias and temperature point of view. This is the difference in standard pn junctions and APD.

A photodiode biased at V, below the breakdown voltage V; but close to it provides linear
amplification of the current by exploiting the avalanche carrier multiplication.

Such photodiodes with internal gain are called Avalanche PhotoDiodes (APD); they bear
some similarity to PhotoMultiplier Tubes (PMT), but have remarkably different features

* The amplification gain is the multiplication factor M, which can be adjusted by adjusting
the bias voltage V, with respect to Vg

* Since Vg strongly depends on the diode temperature T, variations of T have effect
equivalent to significant variations of the bias V,. Therefore, for having a stable gain M,
the temperature of the APD must be stabilized.

* The actual dependance of M on V, can be fitted fairly well by an empirical equation
1
I/a u

1= (%)

with exponent u that depends on the field profile (and on the type of semiconductor); it
varies from 3 to 6, with higher values corresponding to wider high-field zone.

If we change the bias voltage we also change a lot the M according to the formula in the image. In fact,
ripples on the bias voltage create a variation of M.

Evolution of the APD structure

Early attempts to develop APDs exploited PIN structures modified for operating at
higher electric field (typically F, > 100 kV/cm): more efficient guard-ring for avoiding
edge breakdown; higher uniformity in material processing over the sensitive area; etc.
The PIN structure, however, turned out to be unsuitable for APD devices.

+V,
n~ deep-diffused n* thin layer
guard ring *Ya
L s n* p- +
e — P
Tt -
' Wy '
p ~low doped Wy ; Space charge
epistrate p || ! density
i || x
p* substrate i
X -r---—==-"- L - -
Fe . ! T 100 kV/cm
L ; x

If we have a doping profile (to create e.g. the n region of the pn junction) and we change the radius of the
doping profile we see the accumulation of electric field lines in the region where the doping region is not
flat, so the electric field is high.
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The problem is that we are trying to work with a bias voltage that is close to Vb but not above it. If in the
flat region of the doping region we are just below Vb, at the corner where the electric field is higher we
are above Vb.

So the idea is to create guard rings, diffusion region where the doping is much lower than in the flat part,
so we compensate the fact that we have an accumulation of electric field with a lower electric field thanks
to the presence of the guard ring. This is the difference between a standard pn junction, where we are
very far from Vb because not of interest, and an APD.

PIN structure is unsuitable for APD devices

. . M 330K
1. Even perfect p-i-n devices would g 300K
. ©
have features not well suitable for 8 100 + T=273K
operating as APD S
2. Moreover, real p-i-n devices have i 10 L
unavoidable small local defects that S
rule out any prospect as APD. E 1
1
100 200 300 v,

* Even a perfect p-i-n diode would have multiplication factor M very steeply rising
with the bias voltage V,, because the depletion layer is wide (for obtaining high
detection efficiency) and the high electric field zone covers it almost completely. It
would be extremely difficult to obtain a stable and accurately controlled gain M.

The evolution of the device design from PIN to Reach-Through APD structure was then
driven by the insight gained in the PIN-APD failure.

In the graph we have the behaviour at different temperatures. We notice that M as reasonable values (100
in log scale), but it’s very small compared to the PMT (millions). However, the real problem is the shape
of the curves in the plot, because it’s quite vertical, hence changing a little the bias voltage completely
changes M.

The problem is that as soon as we increase the region where we have high electric field (depleted region),
the behaviour of M becomes steeper and steeper. The problem is that we need a wide depleted region to
collect light.

So the idea is to add a layer.

REACH-THROUGH Si-APD DEVICES (RAPD)

The region with very high electric field is limited to the p region, which is very small, but the depleted
region is very large.

In the flat region (depleted region), the electric field can be reduced. I don’t want high values there
otherwise the behaviour of M is steeper and steeper, also because at a certain point we saturate the
velocity and increasing more we just pay in terms of power consumption.

So in the depleted layer we have the saturated speed of the carriers.
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Basic idea: to improve the structure by inserting a thin layer with high electric field F,
(where carriers undergo avalanche multiplication) beside a wide depletion layer with
moderate F, (where carriers just drift at saturated velocity)

+VA
+V, P
n~ deep-diffused n* /
guard ring thin layer P
n ~ +
~ P P —|
L = J— =~
K\____f Ji LN \ \._____,y i =
Howe
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x
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¥ " 77100 kv/em
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Now we notice that the characteristic is not so steep, even if we still have a dependance on temperature.
Moreover, the M value is not increasing, we are not changing its absolute value but its behaviour as a
function of voltage. At the exam, taking M = 100 is good, because M = 1000 is impossible, and M = 10
is too low.

* The total depletion layer width of Si RAPDs
in most cases is from 10 to 30um, in order

to obtain high detection efficiency up to Y o K

800-900nm wavelength (NIR edge)

* The width of the multiplication region 100
(where F exceeds the ionization threshold) r
is much thinner, from 1 to a few pm

* Moderately steep rise of M with the bias
voltage is obtained; the RAPD gain can 10
thus be reliably controlled.

NB: Log vertical scale

* The dependance of M on the device
temperature is still remarkable and must 1
be taken into account

100 200 300 400 V,

The highest M obtained with Si-APDs is much lower than the gain level currently

provided by PMTs. In the best cases M values up to about 500 are obtained; attaining
M=1000 is out of the question
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Avalanche statistics limits the APD gain

Avalanche multiplication is a statistical process = the APD gain has random
fluctuations.

Let us denote by:

M the mean multiplication gain
oy’ the gain variance and

In the multiplication, the fluctuations of the number of primary charges are not only
amplified by M?; they are further enhanced by a factor F>1 called Excess Noise Factor
(like for PMTs).

Input: primary carriers with

mean number N,
variance 0p2=Np (Poisson statistics)

Output: multiplied carriers with

mean number N,= M N,
variance 0,*= F M?0,%= F M?N,,

We are neglecting what happens in the middle, we start with a signal and noise at the input and we look
just at the output.

As for the PMT we can define an excessive noise factor.

The physical processes exploited for multiplying electrons in PMTs and in APDs are
remarkably different and the detector gain has remarkably different features.

In PMTs, the accelerated electron that hits a dynode is lost and the number of
emitted secondary electrons fluctuates in a set of values that includes zero. The
resulting mean number of carriers coming from the dynode is just the mean
number of emitted secondary electrons and is definitely higher than unity.

In APDs, the accelerated electron that undergoes a ionizing impact is not lost, it
remains available for further impacts; the generation of a further electron (plus a
hole) is statistical and the mean number of generated electrons is definitely
lower than unity. The resulting mean number of electrons after the impact is
one plus the mean number of generated electrons.

In PMTs the gain is produced by an unidirectional sequence of events, the
cascade of statistical multiplications at the various dynodes. Cascaded statistical
processes can be well analyzed by known mathematical approaches (as the
Laplace probability generating function)

In APDs the statistical process is much more complicated than a simple cascade
because of the intrinsic positive feedback in the impact-ionization. Rather than a
cascade, it is a complex of interwoven feedback loops, each one originating from
the other type of carrier (the hole in our case) generated in the impact.

In PMT the excessive noise factor F was lower than 2 and in some cases we could have considered it 1.
This cannot be done with the APD because the physics of the device is completely different. In fact, the
accelerated electron can generate at the best one pair, and not always. So the process is slower, which
means higher noise.

Furthermore, in the APD we have also holes moving in the opposite direction, and so a positive feedback
that creates problems in terms of noise.
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For k << 1, that is the case of silicon, we can summarize the excessive noise factor F as below.

In Silicon with electric field intensity just above the ionization threshold, the situation is
very favorable since the F degradation due to the positive feedback is negligible.

* The ratio of ionization coefficients is very small k = B/a < 0,01
- probability of impact ionization by holes much lower than that of electrons.

* the mean number u of secondary electrons generated by the impact of an electron is
small u<<1

The process can be analyzed as a cascade of electron impacts. By employing the Laplace
probability generating function and numbering in sequence the impacts we get

F=1+4+vh=1+ ~ 2

F=2 is the lowest possible F for Si-APDs and is achieved at low gain level. The conclusion
is confirmed by experiments on carefully designed APD devices operating at M<50.

For comparison, recall that ordinary PMTs routinely offer F < 2 at very high gain M>10°.

In the best of the cases, F = 2, cannot be smaller. So for sure we cannot neglect F when considering an
APD. Moreover, F = 2 can be obtained only with special devices and if M < 50. As soon as we increase
M, we also increase F.

We want a gain so that the noise is negligible with respect to the noise of the next stage, that is the analog
frontend (preamplifier).

The problem is that as soon as we increase the signal we are also increasing the noise, but not the noise
itself, but the F number. At a certain point we will increase the noise more than how much we are
increasing the signal, and the SNR drops down.

* Silicon with electric field just above the ionization threshold is a specially favorable
case. In all other cases the positive feedback in the avalanche process is
remarkable, it cannot be neglected and has detrimental effect on the variance of
the APD gain.

* The fluctuation of the electrons generated in an impact is not only amplified by the
further electron impacts in the subsequent multiplication path. The holes that are
generated in the impact travel back and re-inject the fluctuation in a previous step
of the multiplication path.

* This back-injection of fluctuations enhances the excess noise factor F, with an
efficiency that increases with the k factor (the relative ionization efficiency of holes
versus electrons).

* In Silicon the k factor markedly increases as the field is increased. Therefore, F
markedly increases as the bias voltage of the APD is raised for increasing the gain.

The positive feedback plays a key role. The situation is completely different if k = 1 or smaller. In silicon
it is for instance almost 0.
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A thorough mathematical treatment of the avalanche multiplication is quite
complicated and beyond the scope of this course. We will just comment some results
of treatments reported in the technical literature.

With some simplifying assumptions (uniform electric field; constant k value), it has
been shown that the excess noise factor F with primary current of electrons is

FmM[l—(l—fc)(k%)z]

* In cases with negligible positive feedback k=0, the equation confirms the result of
the approximate analysis

1 .
=2 __= since M>>1
F=2—on2 ( )

* In cases with full positive feedback (i.e. equally efficient carriers, as in GaAs and
other llI-V semiconductors) it is k=1 and F increases as M

F~=M

* In cases with intermediate feedback level it is 0<k<1 and the equation specifies
how F increases with M with rate of rise that increases with k. For instance:

with k=0,01 at M=100 we get F=3
with k=0,1 at M=100 we get F=12

When we want to compute the magnification to obtain, with a PMT we consider only the noise of the
cathode and amplifier, while with the APD if we try to do this, we increase the noise of a factor M"2*F.

* The gain M of the APD is intended to bring signal and noise of the detector to a level
higher than the noise of the following circuits, with the aim of attaining better
sensitivity (smaller optical signal) than a PIN photodiode (limited by the circuit noise)

* However, when the voltage is raised for increasing M also the variance of the gain
fluctuations increases. At some level M,,,, the effect of the gain fluctuations
becomes greater than that of the circuit noise: increasing M beyond this level would
be nonsense. This M,,,, limit depends on the actual case (actual APD and circuit).

* Itis the maximum factor F,,,, tolerable in the actual case that actually determines
the M,,,, level. In critical cases (typically InGaAs APDs, which have F=M) a fairly high

value F,,,, turns out to be tolerable, even up to F,,, = 10.

Thanks to the low k factor, Silicon devices have the lowest excess noise among APDs and
achieve the highest gain levels.
Si-APD devices specially designed for low k have

F<2,5 uptoM=100
F<5 uptoM=500.
Ordinary Si-APD devices have fairly lower performance, i.e. typically

F<4 uptoM=100.

With Silicon, to get F < 2.5 we have to work with M = 100.
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Conclusions

In I1I-V semiconductors (GaAs, InP, InAlAs, etc.) the ionization efficiencies of electrons
and holes are equal (k=1) or at least comparable (k=1). The positive feedback thus is very
strong and F increases as M (see previous slides).

For InP-InGaAs and other IlI-V devices the useful gain range is fairly limited , typically:
F<10 up to M=10

Nevertheless, InGaAs-APDs are in general preferred to Ge-APDs for detecting IR optical
signals because they have lower dark-current (lower detector noise) and higher
quantum detection efficiency, with cutoff to extended to longer wavelength (typically A
<1,7 um)
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SINGLE-PHOTON AVALANCHE DIODES

SINGLE PHOTON COUNTING

With the APD we can detect a single photon, but the gain is very small compared to the PMT. Moreover,
we have much stronger statistical fluctuations for the APD than the PMT, they can reach a value equal
to the gain M.

So APD instead of PMT for single photon counting cannot be used. Or better, almost no for silicon APD
and no for any other material.

APDs can detect smaller optical pulses than PIN diodes, thanks to the internal gain M.
However, the improvement of sensitivity is much lower than that brought by PMTs with
respect to vacuum tube PDs. The reason is that in comparison to PMTs the APD gain M
has
1. much lower mean value M
2. much stronger statistical fluctuations, with relative variance that increases with M
The QUESTION arises:

can we employ linear amplifying APDs instead of PMTs in single photon counting and
timing techniques?

And the ANSWER is: NO!

More precisely, almost NO for silicon APDs and absolutely NO for APDs in other
materials. In fact, we will now verify that only some special Si-APDs achieve single
photon detection, although with marginal performance (detection efficiency lower
than APD in analog detection; etc.), and other APD devices are out of the question.

APD FOR SPC?

* The APD output pulses due to a single primary carrier (single-photon pulses) are
observed and processed accompanied by the noise of electronic circuitry, arising
in the preamplifier and processed by the following circuits.

* A pulse comparator is employed to discriminate SP pulses from noise; pulses
higher than the comparator threshold are accepted, lower pulses are discarded.

* The parameters of the set-up (rms noise; pulse amplitude; threshold level) should
be ajusted to provide:

1. Efficient rejection of noise, i.e. low probability of false detections due to the
noise

2. Efficient detection of photon pulses, i.e. high probability of detecting the SP
pulses, which have variable amplitude with ample statistical fluctuations

We use a comparator to detect photons and not an amplifier because when we go to single photon
counting we are in a totally digital approach, we don’t have 1.5 photons. So we use a comparator to have
digital pulses to collect.
Since it is digital, the output is digital, but the input is totally analog, since we have an amplification of
the signal from the APD and then a comparator with a threshold. So the goal of the analog part that gives
the digital output must efficiently reject the noise. So:
1. Efficient rejection of noise, so I want to set 1 in output only if I have a photon, not if I have noise
(dark count). To solve the issue that the threshold is crossed without signal we can increase the
threshold
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2. Efficient detection of photon pulses.

Noise rejection in photon counting

*  With noise amplitude having gaussian distribution (most frequent case) with
variance o, (rms value), the noise rejection threshold level must be at least
N, 2 2,50,,in order to keep below <1% the probability of false detection

* We have seen that by employing an optimum filter for measuring the amplitude
of detector pulses we get rms noise (in number of electrons)

e =electron charge and typically:
HZCL\/S_\/? C, = 0,1 to 2pF load capacitance;
v L
+/Sp = 2 to 5nV Hz''/2 series noise;

Op=—""—"—
e
/S; =0,01 to 0,1 pA Hz'V2 parallel noise

With high quality APD and preamp we get typically o, = 40 to 120 electrons.
The noise rejection threshold required then is
N, 22,5 0,=100 to 300 electrons.

Furthermore, M just higher than N, is not sufficient for having SP pulses higher than

the threshold: we will see that M much higher than N,, is necessary.

*  We know that the optimum filter (and of course also an approximate optimum) is
a low-pass filter and the output pulse has a width (i.e. a reciprocal-bandwidth) of
some noise corner time constant 7,,. . Since in our case T,. ranges from 10ns to a
few 100ns, the output pulses are fairly long and this brings drawbacks.

With a threshold larger than 2.5 or 3 sigma we are almost sure that we are not crossing the threshold with
noise. For a SNR = 1 we need 40 to 120 electrons, and if we take 2.5 to maximize the noise we have from
100 to 300 electrons for SNR = 1. So it seems that we have to set a threshold of 100 e- to avoid the
problem with noise. The APD can have a gain of 100, and also 300 is lower than 500 (maximum gain of
the APD in special cases), and so the signal is greater than the threshold and noise is much smaller.

However, for some reasons, in the real world, we need a M that is much higher than Nnr.

The problem is that the formula in the image comes from the optimum filter theory, which is in the end
a LPF, and in our case is between 10 and 100 ns. The point of the LPF is that when we want to detect
single photons, we don’t want to detect only one, but some of them, counting them. I have a threshold
and to detect one photon we have to cross the threshold. To detect two photons I should cross the
threshold two times, if the photons are not overlapped. For a 2 photon detection I have to cross the
threshold 3 times at least (up, down, up). This is important because with a LPF we have a pulse of ligh
that gives the response as in the image below, with a tail. If the second photon is close to the first one,
there is a probability that the second signal is overlapped with the first one and the threshold is not crossed
3 times, it is like we have one single pulse and we loose one photon = count losses in photon counting.

The only way to solve the problem is to reduce the tail, making a faster system. But reducing the tail

moves us to a sub-optimal filter, not the optimal one. Something that in the time domain is thinner has a
bigger BW in frequency, and we are picking more noise, so the sigma has to increase, no more only 2.5.
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* In photon counting the finite width of the SP pulse causes count losses.
When the time interval between two photons is shorter than the output pulse
width, pulse pile-up occurs (i.e. the two pulses overlap), the comparator is
triggered only once and one count is recorded instead of two

Comparator
SP pulses output of an threshold
approx. optimum filter
Comparator output L o
fed to the counter | \><
t

« Photons occur randomly in time, hence the probability of pulse pile-up increases
when the pulse width is increased.

* In conclusion, the percentage of lost counts increases as the pulse-width is
increased. The width of the SP pulses should be minimized, in order to achieve
efficient photon-counting with minimal percentage of lost counts.

TIME JITTER IN PHOTON TIMING

We have the threshold and we need a clock, or a watch, that measures the time between the laser pulse
and the crossing time of the threshold.

But are we sure that the crossing time is fixed? No, because superimposed to the signal we have noise
and so we could have a jitter in the crossing time, so the crossing time changes due to the noise.

The jitter is in someway proportional to the variance of the noise. The problem is that we are proportional
to the sigma of the noise, and this is the noise of the comparator for instance, not necessarily the one of
the sensor.

To improve the situation without changing the comparator, we can change the derivative of the sensor,
making a steeper response, so that the jitter influence is reduced. To increase the slope of the rising edge
of the signal we have to increase the BW. Again, if we increase the BW we increase the noise.

* In photon timing, the arrival time of the pulse is marked by the crossing time of
the threshold of a suitable circuit by the SP pulse.

* The noise causes time jitter (statistical dispersion) of the threshold crossing time

* A quantitative analysis is not reported here, but it is evident that the time jitter is
proportional to the noise and inversely proportional to the pulse rise slope.

* Afairly long T,,. implies reduced pulse bandwidth and reduced slope of the pulse
rise, hence wide time jitter.

‘ Noise |\ ’,/" s I Noise amplitude dispersion =2,50,
’/&\ /,*
il S
SP pulse Pt W
y 7 [SP pulse I

-

-
'
1 1
! '
’ - !
P S '
- 1 '
', '
'
' '
1
' '
' '
' |

Threshold -=----- - 2 o Z00M

SR ) .
{ e, Al WO— —.—.— Threshold

ez -
4 4

. x ) Crossing time jitter

o / =2,50,/pulse slope t
i< L i N

.

237



Photon counting and wide band electronics

For reducing count-losses and time jitter, we must process the APD pulses with filter bandwidth wider
than the optimum filter. However, this implies higher noise, hence higher threshold level and higher gain
required to the APD.

EFFICIENCY IN THE DETECTION OF SP PULSES

I expect that every photon is converted in 1 electron, and 1 electron in 150-300 electrons to cross the
threshold. However, it is not true that the efficiency of the detector is 1 every time between photon and
electron, so we don’t have always the generation of an avalanche.

Moreover, we are not even sure that the electron that is amplified gives always 150 electrons in the
avalanche, because we have the excessive noise factor F, we don’t have always the same gain

If the APD gain M were constant for all SP pulses, it would be sufficient to have M
just higher than the noise rejection threshold level N,,., but this is not the case.

* The gain M has strong statistical fluctuations, hence a high excess noise factor
F>>1, which is directly related to the relative variance of M

* The statistical M distribution thus has variance gy remarkably greater than the

mean value M . .
oy =MVF—1x=M-F

* This implies that M has a strongly asymmetrical statistical distribution, with most
of its area below the mean value M and a long “tail” above it

p(M) .
~ 2,50y ~ 2,5M -\F

™M

=

The point is that if in order to have a good SNR and neglect the noise we need 150 electrons starting from
one electrons, 150 is not enough as a multiplication factor M, because the M has the behaviour as in the
plot above. 150 is hence the average value.

So when the gain is lower than the average and lower than the threshold, we are actually not detecting
the photon, and this happens in the x region. When the gain is lower than the threshold, the signal is
lower than the threshold.

Sometimes, the amount of light that reaches the detector is really small and we have also to go fast. The

solution is to choose a value of the gain that is much larger than the threshold. The point is that APD is
not able to give too much gain.
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p(M) .
~ 2,50y ~ 2,5M -\F

N, M=GN,
* Therefore, with a mean gain M just above the noise rejection threshold a major

percentage of the SP pulses is rejected. This downgrades the photon detection
efficiency, i.e. the basic performance of the detector.

——
> M
>

* In ord_er to limit the reduction of detection efficiency due to the threshold, the mean
gain M should be higher than the noise rejection threshold N, by a factor G>>1

* In the most favorable case (special Si-APD with optimum filtering), the value of M
necessary for attaining the noise rejection threshold N, is near to the maximum
available APD gain, but there is still some margin. In other cases (regular Si-APDs with
wideband electronics) there is no margin at all.

* CONCLUSION: photon counting with linear amplifying APDs is possible only with
special Si-APDs and with photon detection efficiency strongly reduced with respect to
that obtained with the same APDs by measuring the analog current signal.

AVALANCHE DIODES ABOVE Vb

The APD is used above the breakdown voltage Vb. Since we know that positive feedback is a problem
with an APD (when K = 1, F is much larger than when K = 0), we should avoid it. Instead, we can use
the positive feedback to work above the breakdown voltage. At this point is suppose that every single
photon that creates an electron in the depleted region will cause an avalanche, due to e/h pairs that
generate other e/h pairs. So it seems an infinite charge with a single photon (even if it is limited due to
space charge considerations).

* We have seen that the positive feedback inherent in the avalanche multiplication of
carriers causes strong limitations to the internal gain of APDs in linear operation
maode, thus ruling out the possibility of employing them instead of PMTs in single
photon counting and timing.

* However, the positive feedback makes possible a radically different operation mode
of some avalanche diodes, which working in this mode at voltage above the
Breakdown Voltage Vj, turn out to be valid single-photon detectors.

* Itis called Geiger-mode operation
o Single photon switches on avalanche: macroscopic current flows

> It’s a triggered-mode avalanche: detector with “BISTABLE inside”

o Avalanche is quenched by pulling down diode voltage V4 = Vg (or below)

> Diode voltage is then reset above the breakdown

* Such avalanche diodes, operating above the breakdown voltage in Geiger maode,
generate macroscopic pulses of diode voltage and current in response to single
photons. They are therefore called Single-Photon Avalanche Diodes (SPADs).

The important thing is that the avalanche must be quenched. The name of the detector is SPAD.
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SPAD I-V CHARACTERISTIC ABOVE Vb

Ra=

Vs Vy= V-V,

The |-V characteristics shows a bistable behavior above breakdown V>V :
a) Without free carriers in the depletion region, /,=0 above breakdown

b) at V>V, aself-sustaining avalanche can be started even by a single free carrier
entering in the high field region at V;>Vj In this case 1,>0.

The higher the bias voltage above the breakdown, the higher the avalanche current.
Therefore, the AV = V4-Vg is a key parameter: it is called excess bias or overvoltage.

To get the blue curve we should have no current, but it seems impossible because every electron in the
depleted region will be accelerated and create another e/h pair. So the only way to have no current is to
have no electrons, and this is the situation. If the depleted region is empty, nothing can be accelerated
and there is no avalanche. Of course it is not a stable situation, since we might have thermally generated
electrons. If we don’t have them, the only way to generate an electron is to collect a photon.

Geiger mode operation

We are above Vb and two things can happen: either we have a thermally generated electron or the
collection of a photon, and from point (1) we move to point (2). At this point, we have to bring down the
voltage below the Vb to stop the avalanche to (3) and then bringing again the SPAD above Vb.

A la
(2
(3) (1)
Wa) S Vy=V,- v,

(1) Quiescent state: Bias voltage V4 above breakdown Vg (with excess
bias V. ) is applied and no current flows

(2) Avalanche current flowing: it is triggered by a photon or noise

(3) Quenching: bias voltage Vyis lowered below the breakdown to
stop the avalanche current flowing

(4) Reset: voltage across the junction is restored to the initial value
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SPAD MAIN PROPERTIES

* Inorder to be able to operate in Geiger mode above the breakdown voltage, a
diode should have uniform properties over the sensitive area: in particular, it must
be free from defects causing local field concentration and lower breakdown voltage
(the so-called microplasmas, due to metal precipitates, higher dopant
concentration, etc.)

* Pulses are produced in SPADs also by the spontaneous thermal generation of single
carriers in the diode junction and constitute a dark count rate (DCR) similar to that
observed in PMTs. Low DCR is a basic requirement for an avalanche diode to be
employed as SPAD.

* Various parameters characterizing the detector performance strongly depend on
the diode voltage: probability of avalanche triggering, hence the photon detection
efficiency; amplitude of the avalanche current pulse; dark count rate; delay and
time-jitter of the electrical pulse with respect to the true arrival time of the photon;
etc.

* The breakdown voltage depends on the structure of the device and on doping
levels. Vg also strongly depends on junction temperature. At constant supply
voltage V, the increase of Vg causes a decrease of excess bias voltage V,,, impairing
detector performance. Junction-temperature stability is very important.

EQUIVALENT CIRCUIT OF A DIODE ABOVE Vb

k
re———————— 1
Iy ! |
av, |
a= 1
dl, . -
:I Equivalent Circuit
|
1
1
1
Vg Vo= V-V, a

The equivalent circuit of the diode provides a quantitative understanding of the diode
operation and confirms that the pulses observed correspond to single carriers
generated in the device, spontaneously or by the absorption of single photons

* atVy>Vgthe switch S can be closed or open; when it is closed, the avalanche
current flows. At V4 £ Vg it is always open.

* Closing the switch is the equivalent of triggering the avalanche in the diode.
Therefore, S is closed when a carrier injected or generated in the high field region
succeeds in triggering the avalanche

* Sthenis open when the avalanche current is quenched (i.e. terminated) by the
decrease of the diode voltage down to V= Vg

We have a capacitance, a voltage generator that identifies the Vb, a series resistance, that is the space
charge resistance, and a switch, because we have two conditions, ON or OFF. If there is current, the
switch is closed, while if the voltage is below Vb the switch is open.
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Passive quenching
We add a resistance on the top to quench the avalanche.

R, = IMQ C, discharge
with short l Diode voltage Vy
time const. R,Cy R
+ r-_g _________ [ C4 recharge
Vs I with long
g - | : ! time constant R,Cy4
| R, f Ca|
1 jr—
WO T
1 Vg | )
: - H Avalanche Current
I | | VeV
“7 Rq
t
R, = 1000 to some k() When the diode voltage goes down to V; the
Cy=1to a few pF avalanche is no more self-sustaing. The avalanche
Ta= R,Cyqy = 100ps to few ns is thus quenched by the action of R, and the circuit
T,=R,Cy= 1 to some us is called Passive Quenching Circuit (PQC)

Passive quenching with repeated triggering
We notice that the shape of the pulse is not always the same. The rest is in fact slow since I have to charge
the capacitance, and this is the problem of this application.

Diode l Avalanche Triggering

Velegelg . Vs

C4recharge

i

‘ Cy discharge ‘

Avalanche Quenching ‘

L a: 0.5mA/div
Avalanche b: 0.5V/div

= 100Q to-some kQ Currently | a Hor. 0.3 ps/di
L l |

Cy=1toa few pF
R,Cy= 100ps to few ns
R,C,= 1 to some us

The point is that when we reach the blue Vb the avalanche stops and we open the switch because when
the switch is closed, the bias on Ra and Vb cannot go below Vb because we have a Kirchhoff law. So
how can we open the switch? The switch is open if we have no current or bias voltage below the Vb, so
how is it possible that it works?

Trying to solve the KVL it is impossible that works, so the other possibility is that there is no current in
the circuit.

The current is composed by carriers travelling in a certain time, and R_L is a very big resistance, so the
final current has to be in the order of 50-100 uA because if it is too low, the number of carriers is going
down, and in the depleted region there are no more carriers, the avalanche is no more sustained. Until
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we have 1 carrier in the depleted region we still have an avalanche, but as soon as the current is so small
that there is no more a carrier in the depleted region, the avalanche is no more sustained, and there is no
current in the depleted region, not in the overall circuit.

Diode Terminal Voltage Vj Avalanche Current /,

a: 0.5mA/div
b: 0.5Vidiv
Hor: 0.5 ps/div

* In a passive-quenching circuit, after each quenching the diode voltage slowly
recovers from the breakdown voltage V; to the supply level V.

* In photon counting with a PQC, count losses are caused by the gradual recovery
of the detection efficiency from nil to the correct level after each quenching.

* In photon timing with an avalanche diode in PQC, for photons arriving during a
voltage recovery the arrival time measured on the electrical output pulse suffers
increased delay and time-jitter with respect to the operation at the correct
diode voltage. This effect progressively degrades the time resolution as the pulse
counting rate is increased

* In conclusion, the application to photon counting and timing of avalanche diodes
in Geiger mode with a PQC has very limited interest. It is restricted to favorable
cases, that is cases with low dark-count rate, low count-rate of background
photons and low count-rate of the signal photons

Active quenching

The problem with passive quenching is that if the rate of photons is high (kilo-count per second) we have
problems in detecting the photons, we have different performances of the detector. So the solution is with
active quenching circuits.

We use an electronics that senses the avalanche and has a quenching driver that stops the avalanche and
resets the behaviour of the circuit. So the detector is in an off state for a fixed time, it is no more variable
as in the passive quenching.

QUENCHING
DRIVER
F
hv
—> OUT
Vs o
SPAD COMPARATOR
-V,
by providing Output Pulses

* short, well-defined deadtime
high counting rate > 1 Mc/s

+ good photon timing
standard output

opened the way to SPAD applications

This solution gives us good timing and a standard output, not with pulses with amplitudes varying.
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SEMICONDUCTOR SPADs VS PMTs
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It is a very fast detector (ns) and with a good efficiency, better than the PMT. Moreover, they are used at
relatively low voltages compared to the PMTs.

Challenges in SPAD development

Microelectronic Technology
. Strict control of transition metal contamination
- ultra-clean fabrication process (defect concentration < 10° cm™3)
- suitable gettering processes compatible with device structure
Device design
* Electric field engineering
avoids BB tunneling and reduces field-enhanced generation, with impact on:
—> dark count rate
- dark count decrease with temperature
—> photon detection efficiency
- photon timing jitter
Front-end electronics
. Low-level sensing of the avalanche current = avoids or reduces trade-off between

timing jitter and active area diameter

* Application-specific electronics

This device works in a bistable mode, photon or no photon, and so we don’t have to have thermally
generated electrons not to trigger an avalanche for many seconds to avoid unwanted avalanches.
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SiPM — SILICON PHOTOMULTIPLIERS

S Yot ¢ i
RIS e RS LR C?:E:: Re 1 Re CL Ry CL
o

Rg = 500_% .

This detector is a SPAD array where

vt

« each pixel has an individual integrated quenching resistance R, =100kQ.
» each pixel has a very small individual load capacitance C, =100 fF

* All pixels have a common ground terminal, connected to a low resistance external load,
typically Rs=500Q. The pixel currents all flow in this terminal, they are added

The detector pixels are thus
a) individually triggered by incident photons,
b) individually quenched by the discharge of the pixel capacitance

c) individually reset by the recharge of C; with short time constant R,C, = 10ns

We still use PMTs because the PMT can give us something the SPAD cannot, that is the discrete increase
in detected current, in the sense that counting the current we can detect how many photons are present
simply checking the amplitude of the current. With the SPAD we cannot because we have an avalanche
that is the same regardless of the number of photons impinging.

To solve this issue, we can use a lot of SPAD, so a SPAD array, and passive quenching. Passive
quenching in theory has a long reset time, but here the capacitance is very small because everything is
integrated, while the resistance remains almost the same. The problem of passive quenching is if we have
two photons on the same detector during the reset time. If we have a lot of detector, the probability of
having two photons on the same detector is very small. We can use millions of detectors in parallel in a
3mm x 3mm structure. The advantage is that if we have two photons on different sensors we have a
current that increases in a discrete way with the number of detected photons as in the PMT.

The real problem is the noise. In fact, we have a lot of SPADs and the noise is increased a lot. So in terms
of noise the PMT is still better for the same area occupation.

* The signal charge at the common output is proportional to the number of incident
photons (at least as long as the light intensity on the detector is low enough to have
negligible probability of more than one photon arriving on a pixel at the same time)

* Each pixel is a digital SPAD detector, but the pixel ensemble provides an analog
information about the number of incident photons. The operation is indeed fairly
similar to that of PMTs with microchannel plate multiplier. The detector was indeed
conceived and is currently denoted as «Silicon PhotoMultiplier» SiPM.

With respect to PMTs, SiPMs offer various advantages

a) The typical properties of microelectronic devices (miniaturization; low voltage and low
power; ruggedness; etc.)

b) remarkably higher detection efficiency, particularly in the red spectral range

c) operation insensitive to magnetic fields, which are detrimental for PMTs

However, SiPMs have also drawbacks with respect to PMTs

1. active area not as wide as PMTs

2. lower filling factor, with corresponding reduction of the photon detection efficiency

3. Fairly high dark current, that is, much higher dark current density over the active area
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TEMPERATURE SENSORS

- Metallic RTDs: principle and fabrication
- RTD Electrical Signal

- Circuits for measurements

- Thermistors

METAL RTD PRINCIPLE

Principle:
* Resistance R, of metal conductors increases monotonically with temperature T
* calibration of resistance versus temperature R¢(T) is accurate and stable

* By measuring resistance variation AR; we get the temperature variation AT
Linear behavior of R(T) is a good approximation on wide T range for various metals
Rs = Ro(1 + aAT) To = reference temperature; Ry= Rs(Tp);
ARS = (XATRD AT= T‘TO ; AR_;z Rs' RO

a is called temperature coefficient of resistance.
ais around = 4-103 for metals currently employed in RTDs

Metal o
Platinum Pt 39.10°3
Copper Cu 4,3-103
Tungsten W 4,6-103
Nickel Ni 681073

It is a resistance that changes its value as a function of the temperature, and RTD has the advantage of
being very linear. The value of alpha must be known for the exam, that is 4*10"3 (order of magnitude).

5,0 T T T !
Tungsten
40
Rs
Thermistor
RS 0
3,0 Platinum =1

Rep=Rs @ T=0°C

2,0

1,0

1
0°C 200°C 400°C 600°C 800°C

Temperature
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Metal RTD technology

Platinum has useful qualities:

* Chemically inert and resistant to contamination, hence stable properties

*  R¢(T) linear with very good approximation from -200°C to about 500°C and with
small deviation from linearity up to 800°C

« small quantity of Pt necessary in a RTD, cost is not high

Pt is the material of choice in many cases and is used in official metrology to define
the International Practical Temperature Scale (from 13,81 K to 903,89 K).

Because of requirements for correct operation, the RTD fabrication technology is
not so simple :

* The package must be compact and ensure good thermal contact of the resistor to
the object measured and good electrical isolation from it

* Small size is required with R, > some 10 Q, typically R, =100 Q, in order to have to
measure not very small ARs. Thin wire wrapped in spiral on a support is used

* The mechanical structure must avoid strain of the metal wire due to thermal
expansion or contraction: the piezoresistive effect would cause unwanted
resistance variations and consequent errors in AT

From the device point of view, we have to make a really small sensor to measure the temperature on a
small region, but at the same time the variation of the resistance has R0 as an initial value, so we want
RO big but in a small amount of space.

One of the problems is self-heating. To solve the problem we reduce the power dissipated on the sensor.

RTD do not generate an electrical signal, a power supply is necessary to get
current and voltage in the RTD

Joule self-heating makes the RTD temperature T higher than the temperature T,
of the object measured; the difference AT = Tg - T, increases with power
dissipation Ps and sensor-to-ohject thermal resistance Ry,

The maximum tolerable AT in a given RTD configuration sets a limit Ps,,,, to the
power dissipated in the RTD, hence to the maximum voltage V¢ on the RTD

V2
Ps =R—5S Ps < Pgmax Vs < Rs - Pg

The allowed voltage V¢ on the RTD is fairly small: e.g. with R¢ = 100 Q and limit
Psrmax = 100uW, the voltage is limited to Vg <100mV.

The voltage variations to be measured for small variations of temperature are a
small fraction of Vs, i.e. they are definitely small.

RTD OPERATION AT A CONSTANT CURRENT

With a constant current, the variation of voltage is proportional to the variation of temperature.
Normally, we are interested in very small variations of the temperature, and the sensitivity of the RTD
in this configuration is not so high, so we can resort to a differential stage. We use a fixed resistance to
remove the offset.
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ARg = f(AT) ~ aRy - AT

Is Vso = IsRyg
Vs
Voltmeter AVg =Vs —Vso =I5 - ARs =
R
Rs = Vgg—— ~ VooatAT
Ry

In modern electronics a simple approach is possible and practical thanks to the routine
availability of current generators :

* Rsis biased with a constant current generator /s,
* voltage Vs on Ry is measured

» atanyT, Vis exactly proportional to R; : the difference AVs from measured Vs to
reference voltage V¢, gives an accurate measure of AR

* AR is an accurately known function of AT= T-T,, in many cases approximately linear

Differential signal at constant current

Differential | Vso
amplifier

Vs Differential Vso

amplifier
Rog

&P

+ Since AV is much smaller than Vg, it is advisable to include in the circuit a reference
Vs, and take directly differential measurements of AVs, instead of measuring Vg and
then subtracting Vs,

* However, in various cases the RTD is placed on a measured object not near to the
circuit, the long connecting wires have resistance R, not negligible with respect to Rs
and their effect is significant and must be taken into account

* In the simplest configuration, called «Two-wire-connection», the two wire resistances
are in series with Rs and their voltage drop 2/; R, is added to V¢, thus causing a
significant error in the measured AV,

The problem is that normally the sensor is not near the electronics, so we might have a voltage drop over
the cables. To solve this issue we add one more cable.

Remote RTD operation

Differential | Vso
amplifier

Ro

* Errorsin AV due to wire resistances R, are avoided by a «Three-wire-connection».
Both the reference arm and the RTD arm include in series a wire resistance R, ;
the third wire resistance R, is inserted in the common return to the circuit ground

248



Wheatstone Bridge

Ry Ro
Vi
Vs | Differential | Vso (5
amplifier
Rg Ry
==

* An alternative configuration, devised when current generators were not
available, requires only resistors and due to its simplicity is still widely exploited

* Avoltage divider is implemented by the R; of the RTD in series with a
reference resistor R, and the variations of the divider output voltage
corresponding to the variations of R are measured

* This is the principle of the Wheatstone bridge, invented in 1833 by Samuel
Hunter Christie and popularized by Charles Wheatstone and usually drawn as
sketched above at right

This configuration is easier and cheaper with respect to the one with two generators. Moreover, we have
also a PS we can modulate with this configuration. To modulate the sensor, in fact, we have to modulate
just one PS.

The signal we read is the differential one in between the two resistive partitions. We have to make the
circuit linear.

RS:R0+ARS
. Ry _Vy Va
%_mm+m"2 Q)
Rs
VS = VA—
Ry + Rg

For small resistance variation AR < 0,05 R, the voltage variation AV; is
approximately linear with AR5 and can be computed by first-order development

dVs
AV = AR (—dRS) _ Al _ YA ar
Rs=R

As soon as the left and right sides are the same, we can set R0. We use one single R0 because it’s cheaper.
On the top, instead of RO we put x*R0 because we want to optimize the SNR and we don’t know which
is the resistive divider that optimizes it.

Then we take the derivative as a function of x and we get that is maximum for x = 0. For this value we
maximize the sensitivity of our system.
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Rs = Ry + AR

Vo =V Ry V4
SO M Ro+xRy 1+x
Rg
Ve =Vy—————
ST " xRy + R

The Wheatstone bridge can be employed with any ratio x of the voltage divider,
i.e. Rs can be in series with a resistor x-R, with any value of the factor x. However, it
is intuitive and readily verified that with x=1 the highest output AV, is obtained

dv
AV = (—5) = AR =
dRs Rs=Rg

V X ARS
(14 x)2 R,

x 1 i
max [m] =Z fOT x=1

Non linear operations

RS:R0+ARS

Ven = V. =4 %

0= VYAR TR, 2 A()
Ry

V5=VA
Ry + Rg

The cheap availability of integrated electronics for digital data processing and
storage makes practical to extend the application of the Wheatstone bridge also to
cases with greater variations AR, that have a non-linear but known dependance

of AV on AR;

Ro+ARs V
AV = Ve — Vg = Vy — s _ A

ARg
_Va 7Ry
T2 LAk

1+

From the theory point of view it’s easier to use the nonlinear operations.

A2R, + AR; 2
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Remote RTD operation

If the sensor is far away from the frontend, and we are copying with small variations of resistance, the
problem of the resistance of the wire is to be accounted for.

The variation of the temperature along the wire can create a variation of resistance which can be
comparable with the signal we are reading. So we have to use a symmetric configuration to balance the
situation.

Three-wire connection Four-wire connection

V,
Vy 2
R R
R, e f 0 0
Differential [Vso |  Liasks Differential | Vs
amplifier amplifier
RO l_
R :

|||—

* «Two-wire connection» causes error also in this case by adding 2R, to R

* «Three-wire-connection» adds one R, to the RTD and one to the balancing
resistance R, . The R, of the connection to the differential amplifier is not
compensated, but its effect is negligible because the current in it is negligible

* «Four-wire-connection» achieves complete simmetry between RTD arm and
balancing arm, with complete cancellation of the errors due to wire resistances
(and also cancellation of other minor thermoelectric effects caused by electrical
current flowing in conductors with a temperature gradient)

Va Equivalent i Bad . ésm
circuit z ~
AAN O—5
R Ro
’ AVS S R. .
V. A b V. VA iA
s Differential S0 =
amplifier R
B Ro % % Rea .
iA
= 1 = |

Since the source resistance is low, typically Ry;=100 Q:

RTD amplifiers

» for the input differential resistance R;, and the input-to-ground resistance R¢a
moderately high values are sufficient

* the contribution of the input current noise generators is reduced, the input voltage
noise generators are dominant

Since the differential signal AVgis accompanied by a high common mode signal V,/2 :

* adequate CMRR is required at the frequency of the supply V, , which can be
selected at several kHz for reducing the 1/f noise contribution

RO is typically small, so it is not difficult to have amplifier with high input resistance, it is not a hard
constraint. The important thing is the CMRR. In fact we are interested in the differential input but both
inputs are at half the dynamic range, so if we change the bias voltage we change the zero value and we
must account for the common mode voltage variations.
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THERMISTORS

Commonly used temperature transducers called Thermistors are made of
semiconductor ceramic materials, oxides of Cr, Mn, Fe, Co, Ni

The dependence of thermistor resistance R on temperature is strikingly different
from RTDs (see the plot in slide 29): strongly nonlinear, decreases with
increasing temperature and the R values are much larger (some 100 kQ at room
temperature) and have much greater relative variation

The resistance-temperature relationship can be described by the equation

B
=enl?)

where T is the absolute temperature in Kelvin degrees, B is constant. B is called
characteristic temperature of the termistor and usually ranges from 2000 K to
4000 K.

Making reference to the resistance value Ry at a known reference temperature Ty
we get

k= roe [ (57 )]
=R PIBAT T,

It works as the RTD but the material is different and the behaviour is not linear, but an exponential decay.
It is much smaller than the RTD, but the real important thing is that the behaviour is exponential, because
also the small dynamic range is no more a problem.

* Thermistors can be made much smaller than RTDs.

* The smaller mass enables them to respond more quickly to temperature

variations

* The smaller size, however, makes less efficient the dispersion of the self-heating

power, which must be limited to low level

* The basic advantage of thermistors with respect to RTDs is higher sensitivity, i.e.

larger relative variation AR/R for a given AT, which eases measurements of very
small AT

* The main disadvantages are lower accuracy and lower reproducibility and

strongly nonlinear characteristics, which limit the application of thermistors in
automatic control systems

252



STRAIN GAUGES

STRESS AND STRAIN

w |
F g ) F
[ H
/T\
Metal bar with L = length; W = width; H = thickness; A= W-H cross section

F = pull force applied to the ends

* Stress N = F/A force per unit area
* AL =extension of Ldue to F
* Strain £ = AL/L relative variation of L, measured in unit AL/L=10° = 1ustrain

Up to the elastic limit g, (characteristic of material), strain € is proportional to stress N.
For currently employed metals (steel, brass, etc.) the limitis < 2%

Elastic Range
(reversible deformati&

N = Ee¢

Plastic Range (permanent deformation)

E Young Modulus (N/m2) 7

‘When we apply a force on a piece of metal, we are increasing or decreasing its length. The variation on
length is proportional to the strength through the Young Modulus. At the same time, the orthogonal
direction is decreasing according to the Poisson ratio.

L
Wz*
F ¢" F
| H
/T\

In elastic range, a pull force F causes:

1) Extension of L proportional to stress: € = N/E
e.g. for steel E= 200-10° N/m? =200 GPa (1Pa = 1 Pascal=1N/m?)

2) Contraction of the section dimensions W and H proportional to the L extension &

AW AH
— (W) =— (7) =v-e v Poisson Ratio (adimensional number)

For most materials v = from 0,25 to 0,4; for current metals v = from 0,3 to 0,35
3) Contraction of the section area A= W-H (in absolute value)

M W BH
ATw TH T
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PIEZORESISTIVE EFFECT

L L
R=pr=— R resistance; p resistivity; o = 1/p conductivity

* Piezoelectric effect: in various materials a crystal lattice deformation changes the
material resistivity, which contributes to the change of macroscopic resistance.

* Strain changes the shape of the energy band curves (energy vs momentum E-k),
hence changes the electron effective mass m* and therefore the carrier mobility

* Semiconductors have strong piezoresistive effect and the dependence of
conductivity on the strain is markedly nonlinear and strongly dependent on the
semiconductor doping and on the temperature

* Metals have small or moderate effect, somewhat higher for Nickel and alloys than
other metals. The dependence of conductivity on the strain N is fairly linear and a
piezoresistivity coefficient B can be defined

p =po(l+BN)
and the relative variation due to the piezoresistive effect can be described as

?)—'j =pBN=pE-¢
STRAIN GAUGE PRINCIPLE
L
) P '
| 1
! V. T
\,
R= p% = & R resistance; p resistivity; o =1/p conductivity

* In principle, a Strain Gauge (5G) is a long and thin metal slab (small cross section
H << Land W << L) employed to measure the strain € along its length L

* Itis employed to measure strain in elastic range, without permanent deformation

* The relative variation of R is small (small elastic deformation and small or moderate
piezoresistive effect) and can be evaluated in first-order approximation*,
i.e. denoting by subscript «o» the quiescent values without strain

AR AL A P i ave+ pEe = (14 2v + )
—=———+—=c+2ve fe=¢ v 2
Ro Lo 45 po

* The finite small variation is computed as a differential

We want to see how the resistance changes as a function of stress. The relative variation of the resistance
is the relative variation of the length, minus the relative variation of the area plus the relative variation of
resisitivity. The relative variation of the length is the strain.

254



Gauge factor

AR _4L_ 24 +Ap + 2ve + BE (1+2v+BE)
—_— =T — =& VE E=E€ v
Ro Lo Ao po

* The conversion gain from strain € to relative variation of the SG resistance R is
called Gauge Factor G

AR
R, .
G=""2=1+2v+pE

* Metal SG have small or moderate G:
G from 1,8 to 2,2 for most metals
G from 2 to 3,5 for Ni-Cu and Ni-Fe-Cr alloys
G=12 for Nickel
Since metals have about v = 0,3 a metal SG without piezoresistivity (i.e. with $=0)
would have
G= 1,6

A comparison with the actual G values shows that the piezoresistivity
contribution is significant, but it is not a big one

We have to remember at least the order of magnitude of G, which is from 1.8 to 2.2 for metals. There is
a problem; we might have the same variation of resistance either due to the temperature or due to the
strain.

To understand which is the variation of the sensor with respect to temperature we need to understand
how the sensor is made.

DESIGN OF SG DEVICES

Conflicting requirements condition the design and fabrication of SG devices

a) Requirement: SG fastened to the sample under test for having the same strain
Solution: SG fastened onto a robust thin foil, which is then glued to the sample

b) Requirement: SG electrically isolated from the sample under test, for avoiding
shunt effects due to conductive samples
Solution: SG supporting foil in insulating material

c) Requirement: small size of SG, for measuring the local strain and not strain
averaged over a fairly wide area
Solution: limited size of the SG foil, as required by the case under test

d) Requirement: not too small resistance of SG, for limiting measurement errors and
uncontrolled parasitic effects (electrical contact resistance, etc.):
Solution: meander configuration of the resistor, in order to fit a long conductor
length into the small area of the foil

____— Insulating substrate

SG terminals
[ metal SG

We want to create an electrical isolated potential, this is possible making it on an isolated foil that is then
glued on the substrate to measure. Moreover, we want also small sizes, for measure local strains
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* 0Old fashioned wound-wire technology: long thin metal wire wound in meander and
fastened on insulating foil; strain measured on Principal Axis x (direction of meander
long portions) with Principal Gauge Factor Gp

* Main drawbacks: a) sensitive also to strain along Transverse Axis y, though with a minor
Transverse Gauge Factor Gy = 0,05 Gp b) moderate precision and reproducibility;
well-matched SG samples are not available

* Modern lithographic technology: exploits lithographic technology (well developed in
different scales for printed circuit boards and for integrated circuits) for finely
designing SG of small size (1 cm and less) in a very thin metal layer (from 2 to 10 um)
coated over an insulating foil

WOUND-WIRE SG outline LITHOGRAPHIC SG outline

Principal

<-- et >

Axis y

<Transuerse

Transverse

with lithographic processes we can create precise shapes with small vertical transverse axis, so the device
is less sensitive on that direction to the stress or strain. Moreover, the vertical part is also larger so that
we reduce the resistance and so the variation of it.

LITHOGRAPHIC SG real sample Bonding pads for
A electrical contacts
Principal Axis x <-- ] -->

<

Transverse
Axis y

Advantages of lithographic SG

*  Wide transversal portions of the meander: their contribution to the SG resistance
R is small so that the Transverse Gauge Factor is negligible Gy < 0,001 G,

+ Small size < 1cm

* Metal conductor thickness in micron range gives high resistance per unit path;
current R values are from 50Q) to 2kQ), special SG are available with R>10kQ

* Precisely defined device features, small tolerances in industrial production
+ High reproduciblity: well matched SG devices are currently available

* The wide exposed surface area facilitates dispersion of heat generated in the
resistor, thus reducing the SG self-heating
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Electronic measurements with SG

As concerns the electronic measurement technigques, Strain Gauges and Resistance
Temperature Detectors (RTD) are essentially the same case: small variations of a small
resistance (typically a few hundred Ohms) must be measured with high precision.

We will thus make explicit reference to the treatment of RTDs and add some notes
about specific issues of SGs

* The SGresistance is Rs=Rsy+ ARs = Rgg + GeRg

* The Wheatstone Bridge with equal resistors (SG and other resistors with value Re)
is a rational and widely employed solution. With small variations AR /R, <<1
the signal Vs is proportional to the strain € (as computed at 1st-order )

For a W-bridge with
* one SG of variable R
= three constant R

R2=Rsp

_VaARs V4

ST 4Ry 4 F

R;=Rs variable

Let’s suppose that for instance we want to measure 1 microstrain, and G = 2. Which is the maximum
variation of temperature we can tolerate?

* The resistivity of metals increases with the temperature
p=pg +Ap=py, +alATp, (otemperature coefficient of the metal)
for metals employed in SG it’s around o =~ 4-10°3 /K .

* Comparing R variations due to strain € and to a temperature variation AT

ARg\ ARs\
— =Ge — | =aAT
Rso/y Rso/

we see that if the SG temperature T has an even small deviation AT=T-T, from the
reference temperature T, of the other resistors in the bridge, a remarkable error
erensues. In fact, with o = 4-10 /K and G=2 the error is
alAT
er=—(-~2- 1073AT = 2000 - AT[in K] microstrain

* SG temperature deviations are often met in practice (e.g. SG working on motors or
other structures with variable temperature) and produce unacceptable errors.
Temperature effects in the SG cannot be avoided, but accurate compensation of
their effect can be obtained by inserting in the Wheatstone bridge a properly
devised dummy gauge

So it seems that we have to make a very precise measurement of the temperature to detect the strain, a
precision of 1/1000 °C, but this is not feasible in reality.

With the Wheatstone bridge above, however, we measure both the temperature and the strain. So we
need to resort to a different configuration.
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Compensation of temperature effects

Compensated dual SG outline
Active Gauge Rs

/Dummy Gauge Rp

~
< - e _i-«l;H;ﬂ' -> Principal Axis x

| Rs = Rgo + abTRgy + GeRgo = Rey + GeRyy |

‘ Rp = Rgo + aATRsy = Rsr |

* Two identical gauges (Active Gauge and Dummy Gauge) are placed on the same foil

with principal axes orthogonal

Rs=Rso Ry = Rg

Qv

R3=Rso

Rs = Ry + GeRgy

* The foil is glued to the structure under test, with principal axis of the active gauge
in the direction of the strain to be measured

* The strain of the structure tested modifies the resistance R. of the active gauge,
but not the resistance R, of the dummy gauge

* Active and dummy gauge in close contact with the structure tested are kept at the
same temperature of the structure

* The power dissipation in the resistors must be limited by limiting the supply
voltage V, , in order to limit the SG self-heating

It is possible to have a sensor that is sensitive only to the temperature and not to the strain, but not
viceversa. So what we do is to use the exact same sensor, placing it perpendicularly with respect to the
sensing SG so that it compensate for temperature variations.

I don’t have to know the temperature value because it is compensated using a dummy cell.

But where to place the dummy cell with respect to the sensor? R1 and R2 is the best since in this way the

common mode voltage stays the same.

Compensated dual SG real sample

Active Gauge
terminals

Dummy Gauge
terminals

Ry = Rp = Rgp

Ry = Rg = Rgp + GeRygy

* Inthe bridge configuration shown (active gauge Rginserted in R; position, dummy
gauge Rp in R, position) the effects on the output voltage V; of the temperature
variation in Rgand Rpare compensated, hence V; depends only on the strain €

* Other alternative configurations of the bridge can be employed for compensation of

the temperature effects; e.g. Rsinserted in R; position and Ry in R; position
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MEASUREMENT OF BENDING

* With one Strain Gauge just a component of the strain is measured, the tensile or
compressive strain in the direction of the SG principal axis.

* However, other strain components can be measured with more SGs rationally
combined in the Wheatstone bridge

* Let’s consider bending a long board with rectangular section (see the figure). The
upper surface experiences a tensile strain gg, the lower surface a symmetrical
compressive strain - gg . In fact, the strain linearly varies in the board section from
gg to -gg and is zero in the mid, which is called «neutral plane»

« Let’s consider to apply on the two surfaces of the board two matched SG (with
equal resistance R¢, and Gauge factor G), denoted as R, on the upper surface and
Rs, on the lower surface. Due to bending we get

We place R1 and R2 in the same divider, and they are the sensor on the top and on the bottom of the bar,
so one experiencing length increase, the other compression. If there is no bending, both sensors change
of the same length. If we have bending, one is elongated and the other one is compressed.

But if the bending is something that I don’t want to measure, what we have to do is to change
configuration.

*  With Ry, inserted in the bridge as R; and Ry as R;, we measure the bending strain &g

s _VabRsy VaARsy Yy
BT Ry 4 Ry 2 B

* Let’s consider now that a compressive force is added at the board ends: equal strain
£is added at the upper and lower surface, but the two SG have equal variation and
the added contribution to the bridge output voltage is zero

ARsy  ARgy VyARsy V4ARg, _ Y
= =Gs =) Vg =— — A St_g mmp |Vs=VptlVsp=70-¢p
Ro  Rso 7 SF =4 Ry 4 Rso 2

* In conclusion, by suitably employing two SG we can separately measure the net
bending strain g5 also in presence of an axial strain g
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On the other hand, with the same two SG we can also measure separately the net
axial strain g¢ in presence of the bending strain &g

It is sufficient to change the configuration of the bridge. In fact, with Rg, inserted as

R;and Ry as R, we get

_ValdRsy ValRg _ValdRgy V4ARg Yy
T Re 4 R ST R 4Ry 20
50 S0 50 s0

Therefore "
Vs = Vg + Vg :7’10 .

So the idea is to use other two dummy sensors to compensate for temperature.

The measurements of ggand &, obtained with two matched SG as illustrated are
correct only if the two SG are at the same temperature, but in many cases this is
not achieved because the two SG are not in close proximity

The drawback is avoided and the approach extended to all cases simply by

a) employing dual compensated SGs instead of simple SGs and

b) inserting in the bridge each dummy gauge in suitable position to compensate
the associated active gauge

Combinations of various SGs can be employed also for measurements in
complex strain situations, i.e. with strain components in various directions,
e.g. two-dimensional strain in aeronautical structures, such as aeroplane wings
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SEMICONDUCTOR SG

Semiconductors such as Germanium and Silicon have very strong piezoresistive
effect. Strain Gauges in such materials thus provide large Gauge Factor G in the
range from 100 to 300

Magnitude and sign of the piezoresistive effect are governed by the type and level
of doping. In p-type Silicon the effect is positive (tensile strain increases the
resistivity) and in n-type silicon it is negative (tensile strain decreases the
resistivity)

The effect is markedly dependent on the temperature, with G decreasing
significanly as the temperature is increased. A typical example is a reduction from
G=120 at 10°C to G=105 at 65°C.

The Gauge Factor G is not constant as the strain is increased, i.e. the gauge is not
linear, with G decreasing significantly at moderately high strain. A typical example
is a decrease from G=125 at 2000 microstrain down to G=100 at 4000 microstrain

The elastic range of these semiconductor materials is quite narrower than that of
metals, the elastic limit is typically at *4000 microstrain

In summary, semiconductor SGs suffer noteworthy limitations

Response is not linear

Response is strongly dependent on the temperature

Dynamic range is small

but also offer remarkable features, such as

High Gauge Factor, which provides high sensitivity: dynamic strains as small as
0,01microstrains can be measured

Small SG size <1mm, which makes possible to measure highly localized strains,
where a foil metal SG would be too large

Composite structures including various resistors can be fabricated in a small
region of the semiconductor crystal. The monolithic structure ensures equal
temperature of the resistors and by selective doping it is possible to obtain
different sign of piezoresistive effect in different resistors. Therefore, it is
possible to devise SG configurations where the strain effects in different
resistors inserted in a Wheatstone bridge collaborate to produce a voltage
output, whereas the temperature effects are compensated
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